A Multimedia Production and Economic Analysis in Support of Local Foods for Institutions

An Environmental Studies Senior Seminar (ES 401) Project
Middlebury College
Spring 2005

By

Asher Burns-Burg
Erin Frazee
Dave Wright

With support from

Nan Jenks-Jay, Professor
Diane Munroe, Coordinator for Community-Based Environmental Studies
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Video Script</td>
<td>2</td>
</tr>
<tr>
<td>Middlebury College Strategies for Buying Local Food</td>
<td>5</td>
</tr>
<tr>
<td>Arriving at an Economic Analysis</td>
<td>10</td>
</tr>
<tr>
<td>Economic Analysis Fact Sheet</td>
<td>15</td>
</tr>
</tbody>
</table>
INTRODUCTION

Our group was asked by Vermont Fresh Network to produce a set of materials to support the incorporation of local foods at the institutional level. These products include:

- A multi-media presentation targeted at a college-student audience urging them to enact change at their institutions

 - The multimedia presentation (put together using Adobe Premiere), is based on the model of productions such as Leonardo DiCaprio’s clip on global climate change that can be found at http://www.leonardodicaprio.org/whatsimportant/globalwarning.htm. It presents not only the general cost analysis outlined on the fact sheet, but also presents more in-depth information regarding the benefits of local foods in comparison with our industrial/global food system. Ideas and quotes from the books and articles we read as part of our senior seminar, as well powerful images, fortify the messages being conveyed. The production lastly hones in on the ways that institutions, like Middlebury College, can work towards a more sustainable type of food service. Examples from Middlebury and other schools will flush out the ending of the presentation regarding practical steps taken towards local food integration in dining halls and cafeterias.

- An account of how Middlebury College has been successful in incorporating local foods into its dining services

 - The account of Middlebury College’s dining operations is intended as a reference for other institutions seeking to incorporate more local foods into their dining services. It provides insight into how Middlebury College has achieved its high level of commitment to sustainable, local foods.

- A comparative economic analysis of a representative menu comprised of conventional vs. local foods (presented as a fact-sheet with an accompanying explanation of the analysis)

 - Our economic analysis compares the *real inclusive* costs of a representative menu produced from local foods vs. from non-local foods. The menu was selected with an institution such as Middlebury College in mind, so that it is applicable as a supporting resource to accompany the Multimedia Presentation. The intent of this economic analysis was to provide a one-sheet set of data to convincingly communicate the argument that the unaccounted-for environmental and social costs of conventional food products greatly outweigh the slightly more expensive shelf-price of local food products.

1 The video script is provided in this report. Copies of the video on CD can be obtained by contacting Diane Munroe, Middlebury College Environmental Studies Program, (802) 443-5925, dmunroe@middlebury.edu
LOCAL FOODS VIDEO SCRIPT

Hungry? No problem, right? A refrigerator bulging with food, a supermarket stocked with produce or a dining hall full of today’s specials is a couple short minutes away.

But hold on a second. Ever thought about where that food comes actually comes from? I mean before it reaches your plate. The answer is…the Earth! (ding ding ding).

Here’s the thing. Our planet is unique in a critical way: unlike Mars or Saturn, it supports life forms—Like us! And not just a few of us—the world’s human population is currently rising over 6 billion! More importantly, the Earth has always provided natural resources (fertile soil, rain, nutrients…words in text) that, coupled with advances in technology, produce the 550 million metric tons of grain it takes to feed the world’s people every year. That sounds like a lot of food, right? So we’re all set? Actually, that couldn’t be farther from the truth. It’s not all rainbows and butterflies. Let me explain.

The industrial methods our society currently uses to produce food—massive fields of monocultures, chemical herbicides and pesticides, long-distance international transport—are unsustainable. Simply put, they can’t continue for much longer without running into some severe problems…both environmental and economic.

There is a solution, however. And it is up to our generation to initiate systemic change, starting close to home—in our own dining halls. What is this solution, you ask? Local foods.

Not convinced? Let’s look at the facts:

When you eat local foods, you know what you are getting. The farmer who grew the lettuce in your salad lives right in your area, a local phone call away. Your produce is fresher, and it tastes better. More students eat good food, and there is less dining hall waste to dispose of. You are helping the environment, as fewer gallons of fossil fuels are burned transporting the
food from where it’s grown to where it’s consumed. And your money stays within your community, helping your neighbors and creating local economic growth.

The current agricultural system is an industrial one, where the average kilogram of produce travels more than 1500 miles from farm to plate (Halweil). Is this a bad thing? For those who can afford it, the long-distance food system offers unprecedented and unparalleled choice—any food, anytime, anywhere (Halweil). Sure, it’s nice to be able to buy a banana in Maine in January. But when the whole world begins shipping food thousands and thousands of miles, we start to run into problems. Long-distance travel requires more packaging, refrigeration, and fuel, and generates huge amounts of waste and pollution (Halweil).

Sure, local foods are often priced slightly higher than conventional industrial products. But that price doesn’t take into account many of the hidden costs: the money that is drained out of local communities and into the pockets of large businesses, the ecological consequences of fertilizer and pesticide use on massive tracts of industrial farmland, the enormous monetary expenditures on fossil fuels, and the impact of greenhouse gas emissions produced by long-distance transport. Not to mention the large subsidies that our governments give to large agro-businesses across the world.

Ultimately, what this current system of agriculture leads towards is the creation of unsustainable communities. No family in Idaho can live entirely on potatoes, and no family in Vermont can live solely on dairy products and maple sugar. By purchasing a wide variety of foods locally, you not only help keep money in the community but you also promote self-subsisting agriculture.

Farmers in the U.S. have become an endangered species. Pretty ironic, huh?, considering that farmers cultivate the only product that the human race cannot do without. Despite our
unquestionable reliance on farmers, it is tractor makers, agrochemical giants, seed companies, food processors, and supermarkets that take most of the money spent on food, leaving farmers less than 10 cents of the typical food dollar (Halweil).

Giant corporations have gained too much money and power abusing the Earth’s resources in the name of agriculture. These companies and the governments they influence are dangerously resistant to change. So it’s up to us. Think of yourself as part of an army—an army with significant power: the power to buy what we want. As Jon Rooney, a farmer from Monument Dairy says, "Every dollar you spend makes an impact. Why not make that impact local?" We can fight for what we believe in, with our wallets as our weapon. Next time, think before you buy.

Not only can you make a personal difference when you take a trip to the grocery store, but you can petition your College or University to join with the roughly 200 other institutions across the country that have made local foods, and sustainable agriculture, a priority in their dining services. Quality local foods have not only enhanced the dining experience at these colleges and universities—as frozen veggie mixes and boxed mashed potatoes have been replaced with local produce—but they have also started a wave of student awareness that is just gaining momentum. Now it’s you turn. Ask your administration what it is doing to help solve the problems associated with our current industrial agricultural system. Insist on implementing local foods into your dining service plan. Be part of the solution. Join the movement that is thinking about the future. Buy local. Think global.
MIDDLEBURY COLLEGE STRATEGIES FOR BUYING LOCAL FOOD

Purpose:

Middlebury College Dining Services is unique in that it incorporates a large proportion of local foods into its regular student board plan. This document serves as a testimony of the reasons why Middlebury has been so effective in achieving this high level of commitment to sustainability through its local foods efforts. The source of this information is a series of interviews with Middlebury Dining Services’ head buyer, Charlie Sargent.

Guiding Questions for Charlie Sargent:

1. What was the first thing that Middlebury College did regarding integrating local foods?
2. What role have you played in integrating local foods into the College menu?
3. Why are local foods at Middlebury College important to you?
4. What barriers have you encountered, and how have you overcome them?
5. Have you worked with other institutions on this local foods initiative?
6. What have you found most successful?
7. What goals have yet to be accomplished?

Findings:

Middlebury College sourced its food locally before Charlie Sargent became the purchaser 30 years ago because it made both practical and economic sense. In fact, Middlebury used to have its own farm, as did many colleges and universities. However, the farm closed in the 1940s because it couldn’t supply enough food for the growing College population. In Charlie’s opinion, the College would continue to purchase locally even if he left. There are two reasons
for this; first, some foods are cheaper if purchased locally and second, the College’s administration supports local purchasing.

At this point in his career, Charlie has developed many connections with local farmers and is quite knowledgeable about what local foods are available at what price. This allows him to be creative in trying to get more local foods into the meal plan. For example, in the spring of 2005 he has been able to substitute the locally produced Crazy Steph’s Nutty Granola (made in Waitsfield, VT) for the conventional brand, Nature’s Valley Granola. By working directly with Steph, Charlie cuts out the need for a distributor, thus making the local Nutty Granola price-competitive with Nature’s Valley’s. This is beneficial to both Steph and Middlebury College. Steph is able to sell her product at a higher price and reduce packaging costs and Middlebury College is able to buy a superior local product at comparable prices.

In addition to helping incorporate local foods into the dining hall meal plan, Charlie has been able to have an impact on supporting local foods in the surrounding area. By shifting Middlebury’s demand to a greater quantity of local foods, Charlie is working with Burlington Food Services to help integrate a greater percentage of local foods into their distribution matrix.

For Charlie, local foods are a smart option aside from the positive impact they have on the local economy and environment. Local foods tend to be simply put, “a better product.” This food tastes fresher, is enjoyed more by the students, and therefore generates less waste, saving the College significant money that would be spent on garbage disposal.

However, there are also barriers to incorporating local foods into Middlebury’s dining halls. The main issue has to do with supply. Local food supply varies greatly depending on seasonality; it is much easier and cheaper to source local VT foods in the summer than in the winter. Additionally, sources of local foods can be fairly unpredictable. Charlie described a
situation where a local lettuce producer was supposed to deliver a set number of cases of lettuce to the College every week. The local farmer couldn’t reliably supply exactly what was needed on a regular basis, so Charlie had to work out a new system. Now, Charlie has a regular order with Burlington Food Services for his lettuce, but the farmers call in with a list of all of their extra product each week during the summer, and Middlebury College has an arrangement to buy it as supplemental quality food in the dining halls.

Another barrier has to do with changes that have occurred recently within the College. Decentralized dining makes it harder to keep the dining halls stocked. Rather than having one large food storage unit there are now a number of smaller ones. It is therefore essential to have a consistent on-demand supply for more frequent re-stocks.

Charlie is also committed to sharing what he has learned about incorporating local foods into Middlebury’s dining service with other institutions. For example, Charlie worked with Dartmouth to help them start using local foods in their dining halls. He invited their purchasing staff to Middlebury to see first-hand how we have been able to use such a large amount of local foods in our menu. He also has acted as a sounding board for ideas they have had specific to Dartmouth. In addition, in the spring of 2005, Middlebury College hosted the annual conference for the Northeast Region of the National Association of College and University Food Services to discuss sustainability issues, with 35 schools in attendance. Thanks to Matt Biette, Director of Middlebury College Dining Services, the theme of the conference was “Local Sustainable Foods” and conversations about local foods played a prominent role in this event.
The Reasons for Success:

There are two main reasons for the large degree of success Middlebury College has had in incorporating local foods into the College meal plan: economic and social.

First, local foods are available at competitive prices. There are many more foods available locally than the College currently incorporates into it meal plan, but Charlie only buys those foods which are roughly price compatible. Why would milk, that is produced 10 miles away, be prohibitively more expensive than milk shipped in from out of state? The answer is: it is not. By ensuring that he purchases local foods that are economically competitive with conventional foods, Charlie is able to continue Middlebury’s tradition of including many local foods in its dining hall menu.

The second reason for Middlebury College’s success in the local foods initiative is that there is a culture supporting the purchasing of these local foods. The administration, students, faculty and staff all approve of the use of local foods. Chefs are excited to experiment with cooking different fresh local foods. The Director of Middlebury’s Dining Services supports local foods and gives autonomy to staff like Charlie to be creative about solutions. Students are happy with the quality of their meals and are very supportive of the idea that what they are eating is local. Faculty have taught classes such as our Environmental Studies Senior Seminar, bringing recognition to Middlebury’s local foods efforts, and the administration has been very helpful in providing funding and support for using creative ways (such as cutting out distributors) to use more local foods. All in all, Middlebury has created a culture of support for using local foods in its dining hall menu.
These two main economic and social reasons have helped put Middlebury College at the forefront of the movement to incorporated local foods into College Dining Services, and they are factors that can be easily replicated at other schools across the country.

Contact Information:

Matt Biette, Director, Middlebury College Dining Services
mbiette@middlebury.edu
(802) 443-5244

Charlie Sargent, Head Buyer, Middlebury College Dining Services
sargent@middlebury.edu
(802) 443-5333

Amy Trubek, Vermont Fresh Network
Ph. (802) 462-3370
Fax (802) 462-3370
amy@vermontfresh.net
ARRIVING AT AN ECONOMIC ANALYSIS

Purpose:

The intent of this economic analysis was to provide a one-sheet set of data for Vermont Fresh Network that would help them to convincingly communicate their argument that the unaccounted-for environmental and social costs of conventional food products greatly outweigh the slightly more expensive shelf-price of local food products. By comparing the prices of locally and conventionally sourced food items from a Middlebury College Dining Services menu, we were able to first establish that the differences in shelf-cost are not actually that drastic.

Complexities:

It did not take us long to realize that there was no real way to quantify each of the environmental and social costs specifically enough to apply them directly into our comparative matrix of the menu items. Without being able to trace conventional food items directly back to their sources on specific farms and doing extensive studies regarding the environmental impacts on those acres of land and the social impacts on those local communities it becomes impossible to calculate the “real costs” without enormous speculations and assumptions. Instead, we decided to do our best at determining the cumulative cost of these factors to the U.S. population on an annual basis. What follows is the information gleaned from extensive research.
Results and Computations:

1. Long Distance Transport, Facts and Sources

- On average, food in the U.S. travels 1500 miles from farm to plate (Halweil, 7).²

- Each fossil-fuel-burning tractor-trailer truck that hauls food 1500 miles should cost $34.66 more per load in order to pay for offsetting the effects of global climate change with carbon emissions sequestration.

Derived From:

Trip distance = 1500 miles

Average fuel efficiency = 7.15 miles per gallon³

CO₂ emissions = 22.4 lbs. per gallon of diesel fuel⁴

Cost of CO₂ sequestration = $7.50 to $22.00 MTCE (average of $14.75)⁵

Computations:

average fuel efficiency x trip distance = 209.8 gallons of fuel per trip

gallons of fuel per trip x CO₂ emissions = 4699.5 lbs. of CO₂ per trip

conversion from lbs. to tons = 2.35 tons of CO₂ per trip

tons of CO₂ per trip x average cost of CO₂ sequestration = $34.66 per trip

• At our current U.S. population and food consumption rate, this should amount to about $280 million per year in carbon sequestration costs for distributing food in our country alone.

Derived From:

U.S. population = 296,133,936 people⁶

U.S. food consumption = 2,175 lbs. per person per year⁷

Tractor-trailer truck capacity = 80,000 pounds for a standard 5-axle truck and trailer\(^8\)

Carbon sequestration costs = $34.66 per truckload (Previously derived and computed)

Computations:
population x consumption rate = 644,091,310,800 lbs. of food per year in U.S.
lbs. of food per year in U.S. / truck capacity = 8,051,141.385 truckloads per year
truckloads per year x carbon sequestration costs per truckload = $279,052,560 per year

2. *Loss of Biodiversity, Facts and Sources*

- “Agricultural biodiversity…or the genetic resources for food and agriculture, includes: harvested crop varieties, livestock breeds, fish species and non- domesticated ('wild') resources within field, forest, rangeland and in aquatic ecosystems; non-harvested species within production ecosystems that support food provision, including soil micro-biota, pollinators and so on; and non-harvested species in the wider environment that support food production ecosystems (agricultural, pastoral, forest and aquatic ecosystems).”\(^9\)

- “Since 1945, world crop yields have increased between two- and four-fold, depending on the crop. An estimated 20-40% of this increase has been achieved by genetic modification and breeding.”\(^10\)

- Biodiversity contributes an estimated $319 billion to the U.S. economy every year.\(^11\)

3. *Pesticide Use, Facts and Sources*

- Pesticide chemicals also cause additional problems including negative human health effects, animals poisonings, contamination of products, destruction of beneficial natural pollinators, and increased pest resistance, just to name a few. Cornell University researchers have reported that pesticides indirectly cost the U.S. *at least* $8 billion per year.\(^12\)

\(^11\) Ibid
4. Soil Erosion and Nutrient Loss, Facts and Sources

- “The major costs to the farm associated with soil erosion come from the replacement of lost nutrients and reduced water-holding ability, accounting for 50 to 75% of productivity loss. Erosion removes soil at a rate of 7.6 tons/acre/year” resulting in costs of $40/acre/year to replace the lost nutrients as fertilizer and $17/acre/year to irrigate in compensation for lost water-holding capacity. This “amounts to an on-site productivity loss of approximately $27 billion per year” from U.S. croplands. There are then additional off-site costs to add up, including those from reduced air quality, pollution of surface waters, and dredging.13

- Destructive algal blooms “have been reported in every U.S. coastal state, with a cumulative economic cost exceeding $1 billion.”14

- Dredging costs the U.S. an additional $100 million per year.15

5. Weakened Local Economy, Facts and Sources

- “As farmers focused on producing undifferentiated raw commodities, food system profits and opportunities were shifted to the companies that process, package and market food.”16

- “Since 1980, farmers’ share of consumer spending has dropped 13 percent, while other food-system sectors are enjoying record profits.”17

- “The Great Plains states are facing rapidly declining populations as a result of changes in agriculture; rural America is emptying out.” Now the farmers who have remained are forced to contract with large corporations to compete, therefore placing themselves in weakened negotiating positions.18

- “Tractor makers, agrochemical firms, seed companies, food processors, and supermarkets take most of what is spent on food, leaving the farmer less than 10 cents of the typical

15 American Rivers. Reducing polluted runoff in the Upper Mississippi River Basin. <http://www.americanrivers.org/site/PageServer?pagename=AMR_content_ddbe>
17 Sullivan, Preston (NCAT Agricultural Specialist) in \textit{Sustainable Corn and Soybean Production}. <http://www.attar.org/attar-pub/cornbean.html>
food dollar” (63). Large corporate businesses are taking the profits of dollars spent by consumers on food. The traditional farmers’ way of life is dying, and the communities that were once built around a sustainable form of local agriculture are dying as well. The U.S. now imports food goods from around the globe, causing money to be drained not only from local communities, but from the country as well. Jobs are outsourced to foreigners at reduced wages. Fewer face-to-face local interactions occur between grower and consumer and there is therefore less social capital developed. 19

Conclusion:

Our research has certainly supported our previous hypothesis that the conventional food system generates a host of environmental and social costs that greatly outweigh the slight extra expense of local foods. Local foods are the more economical option by far. The fact sheet that follows provides a concise synopsis of the above information.

A Cost Analysis of “Conventional” Versus “Local” Foods
(menu sample generated from Middlebury College Dining Services, 2005)

<table>
<thead>
<tr>
<th>Menu Item</th>
<th>Quantity</th>
<th>Conventional Food Price</th>
<th>Local Food Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2% Milk</td>
<td>5 gallons</td>
<td>$13.65</td>
<td>$12.24</td>
</tr>
<tr>
<td>Apple Cider</td>
<td>8 gallons</td>
<td>$26.00</td>
<td>$26.00</td>
</tr>
<tr>
<td>Apples (Granny Smith)</td>
<td>2 cases</td>
<td>$55.36</td>
<td>$30.00</td>
</tr>
<tr>
<td>Roast Turkey Breast</td>
<td>243 pounds</td>
<td>$597.78</td>
<td>$823.77</td>
</tr>
<tr>
<td>Plain Pizza</td>
<td>21 pies</td>
<td>$59.85</td>
<td>$75.08</td>
</tr>
<tr>
<td>Broccoli Pizza</td>
<td>8 pies</td>
<td>$24.00</td>
<td>$39.00</td>
</tr>
<tr>
<td>Mashed Potatoes</td>
<td>230 pounds</td>
<td>$32.66</td>
<td>$34.31</td>
</tr>
<tr>
<td>Sponge Cake</td>
<td>15 sheets</td>
<td>$80.93</td>
<td>$91.13</td>
</tr>
<tr>
<td>Wheat Bread</td>
<td>25 loaves</td>
<td>$31.25</td>
<td>$59.50</td>
</tr>
<tr>
<td>Tomatoes</td>
<td>20 pounds</td>
<td>$15.80</td>
<td>$14.00</td>
</tr>
<tr>
<td>Lettuce</td>
<td>3 cases</td>
<td>$51.30</td>
<td>$42.00</td>
</tr>
<tr>
<td>Carrots</td>
<td>25 pounds</td>
<td>$5.00</td>
<td>$6.00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>$993.58</td>
<td>$1,253.03</td>
</tr>
</tbody>
</table>

Total Cost Difference = $259.45
Total Cost Difference Without Meat = $33.46

The Issue

According to Brian Halweil, author of *Eat Here: Reclaiming Homegrown Pleasures in a Global Supermarket*, if you “include the subsidies for gasoline and roads, the effects of smog and global warming, the ecological fallout from the industrial farms…and a range of other hidden costs…the ‘efficiency’ of long-distance food begins to fade away. Because these costs are mostly unaccounted for—not paid directly by the consumer, farmer, or supermarket—the resulting food is artificially cheap” (7). However, when you take a closer look at the “real costs” of our conventional food production and distribution system, local food becomes the best economical option by far.
Unaccounted for Environmental and Social Costs

Long-Distance Transport:
On average, food in the U.S. travels 1500 miles from farm to plate (Halweil 7). This long-distance transport system is made possible by an oil economy that has enormous, and un-quantifiable political as well as monetary costs to our society. In addition, it would cost $34.66 to sequester the carbon emitted from one 1500-mile tractor-trailer truck trip. At our current U.S. population and food consumption rate, this amounts to about $280 million per year in carbon sequestration costs for distributing food in our country alone.

Loss of Biodiversity:
According to the UK Food Group, “Agricultural biodiversity…or the genetic resources for food and agriculture, includes: harvested crop varieties, livestock breeds, fish species and non-domesticated ('wild') resources within field, forest, rangeland and in aquatic ecosystems; non-harvested species within production ecosystems that support food provision, including soil micro-biota, pollinators and so on; and non-harvested species in the wider environment that support food production ecosystems (agricultural, pastoral, forest and aquatic ecosystems).” This biodiversity is a critical economic asset; an article in BioScience, “Economic and Environmental Benefits of Biodiversity,” estimates that biodiversity contributes $319 billion to the U.S. economy every year (1997). Our industrial agricultural system, however, is constantly working against this naturally beneficial system, limiting biodiversity through the planting of monocultures and through the use of chemical pesticides and herbicides to eliminate all competing organisms.

Pesticide Use:
Pesticide chemicals also cause additional problems including negative human health effects, animals poisonings, contamination of products, destruction of beneficial natural pollinators, and increased pest resistance, just to name a few. Cornell University researchers have reported that pesticides indirectly cost the U.S. at least $8 billion per year.

Soil Erosion and Nutrient Loss:
According to the ATTRA-National Sustainable Agriculture Information Service, “The major costs to the farm associated with soil erosion come from the replacement of lost nutrients and reduced water-holding ability, accounting for 50 to 75% of productivity loss. Erosion removes soil at a rate of 7.6 tons/acre/year” resulting in costs of $40/acre/year to replace the lost nutrients as fertilizer and $17/acre/year to irrigate in compensation for lost water-holding capacity. This “amounts to an on-site productivity loss of approximately $27 billion per year” from U.S. croplands. There are then additional off-site costs to add up, including those from reduced air quality, pollution of surface waters, and dredging. According to NOAA, destructive algal blooms “have been reported in every U.S. coastal state, with a cumulative economic cost exceeding $1 billion.” And the American Rivers organization states that dredging costs the U.S. an additional $100 million per year.

Weakened Local Economy:
According to a 1998 report of the US Dept. of Ag. Commission on Small Farms: “As farmers focused on producing undifferentiated raw commodities, food system profits and opportunities were shifted to the companies that process, package and market food.” Halweil reports that “tractor makers, agrochemical firms, seed companies, food processors, and supermarkets take most of what is spent on food, leaving the farmer less than 10 cents of the typical food dollar” (63). Large corporate businesses are taking the profits of dollars spent by consumers on food. The traditional farmers’ way of life is dying, and the communities that were once built around a sustainable form of local agriculture are dying as well. The U.S. now imports food goods from around the globe, causing money to be drained not only from local communities, but from the country as well. Jobs are outsourced to foreigners at reduced wages. Fewer face-to-face local interactions occur between grower and consumer and there is therefore less social capital developed.

Local Food makes environmental, social, and economic sense.