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1 Introduction1

The 2003 Bank of Sweden Nobel Prize in Economic Science was awarded to

Clive W. J. Granger, Professor Emeritus of Economics at the University of

California at San Diego, and Robert F. Engle, the Michael Armelinno Professor

of Finance at the Stern School at New York University, for their contributions

to time series econometrics. In its o¢cial announcement, the Royal Swedish

Academy of Sciences cited Granger’s work on "common trends" or cointegration

and Engle’s on "time-varying volatility," but this understates their in‡uence,

both on the broader profession and, in this particular case, on each other.

Much of the research that the Royal Academy cited, not least their co-

authored papers on cointegration (Engle & Granger, 1987) and "long memory

processes" (Ding, Granger & Engle,1993), has been published over the last two

decades, but even before then, both laureates were well known for their other

contributions to econometrics. Granger’s (1969) eponymous causality test and

the results of his Monte Carlo studies with Paul Newbold on spurious regression

(Granger & Newbold, 1974) were already (and still are) part of most economists’

tool kits, Engle’s (1974a) research on urban economics was familiar to special-

ists, and both (Granger & Hatanaka, 1964, Engle, 1973) were pioneers in the

application of spectral methods to economic data. And both have pursued

other, if related, research avenues since then: Granger continues to build on his

earlier research on nonlinear models (Granger & Anderson, 1978), forecasting

(Granger & Bates, 1969) and long memory models (Granger & Joyeux, 1980),

and in addition to his seminal paper on the concept of exogeneity (Engle, Hendry

& Richard, 1983), Engle has become the preeminent practitioner of the "new

…nancial econometrics" and its practical applications, like value at risk (Engle

& Manganelli, 2001) and options pricing (Engle & Rosenberg, 1995).

For more than two decades from the mid-1970s until the late 1990s, Engle

and Granger were colleagues at the University of California at San Diego, during
1 I thank Carolyn Craven and one of the editors for their comments on an earlier draft.

The usual disclaimers hold.
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which time its Economics Department joined LSE and Yale as the most produc-

tive centers of econometric research in the world. The paths that took them

to UCSD were quite di¤erent, however. Clive Granger was born in Swansea,

Wales, in 1934, and completed both his undergraduate (B.A. 1955) and gradu-

ate (Ph.D. 1959) degrees in statistics at the University of Nottingham, where he

remained to research and teach, as a member of the Mathematics Department,

until 1973. In an interview with Peter C. B. Phillips (1997, p. 257), he recalls

that when he …rst started to reach, "I knew all about Borel sets ... but I did

not know how to form a variance from data ... so I had to learn real statistics

as I went along." But as someone who was from the start interested in the

application of statistical methods, he bene…tted from his position as the lone

"o¢cial statistician" on campus:

Faculty from all kinds of areas would come to me with their statis-

tical problems. I would have people from the History Department,

the English Department, Chemistry, Psychology, and it was terri…c

training for a young statistician to be given data from all kinds of

di¤erent places and be asked to help analyze it. I learned a lot, just

from being forced to read things and think about ... diverse types of

problems with di¤erent kinds of data sets. I think that now people,

on the whole, do not get that kind of training. (Phillips, 1997, p.

258)

Some of his earliest publications reveal this breadth: in addition to his …rst

papers in economics, there are papers on (real) sunspots (Granger, 1957), tidal

river ‡oods (Granger, 1959) and personality disorders (Granger, Craft & Stephen-

son, 1964)! By the time Granger had moved to southern California, in 1974,

his reputation as an innovative econometrician with a preference for "empiri-

cal relevance" over "mathematical niceties" (Phillips, 1997, p. 254) was well-

established.

Robert Engle was born almost a decade later, in 1942, in Syracuse, New

York, and received a B.Sc. from Williams in physics in 1964. He continued
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these studies at a superconductivity lab at Cornell but switched to economics

after one year, earning his Ph.D. in 1969. In a recent interview with Francis

Diebold (2003), he re‡ected brie‡y on this transformation. When Diebold

(2003, p. 1161) observes that Engle is one of several prominent econometricians -

he mentions John Cochrane, Joel Horowitz, Glenn Rudebusch, James Stock and

another Nobel laureate, Daniel McFadden - with a physics background, Engle

responds that "physicists are continually worried about integrating theory and

data, and that’s why ... physicists tend to make good econometricians [since]

that’s what econometricians do." So far, so good. But when he later recounts

his job interviews at Yale and MIT, he speculates that "one of things that

impressed them was that I knew things from my physics background that had

been useful in analyzing this time aggregation problem, like contour integrals

and stu¤ like that, and they thought ’Oh, anyone who can do that can probably

do something else!’" (Diebold 2003, p. 1164). To be fair, and as this remark

hints, his dissertation, written under the supervision of T. C. Liu, tackled an

important econometric problem, namely the relationship between the frequency

of economic data and model speci…cation, and lead to his …rst professional

publication (Engle & Liu, 1972). Furthermore, a number of the tools and ideas

would later become relevant for his research on cointegration. After six years at

MIT, where he found a climate that was "inhospitable in an intellectual sense for

the time-series people" (Diebold 2003, p. 1166) - one immediate consequence

of which was an impressive series of papers (Engle, 1974a, 1974b, 1976, and

Engle, Bradbury, Irvine & Rothenberg, 1977, for example) in urban economics

- he moved to UCSD in 1974.

The new econometricians at UCSD - another theorist, Halbert White, was

hired soon after, for example - found themselves in a world where the pre-

sumptions of classical statistics - stationary (constant mean and …nite variance)

random variables with "thin-tailed" (normal, for example) distributions - were

often implausible and the usual remedies had become suspect. In short, par-

adise lost.

As the next section describes, the development of autoregressive conditional
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heteroscedastic (ARCH) models, and the extensions it soon inspired - GARCH,

ARCH-M, IGARCH, EGARCH, FIGARCH and TARCH, to mention just a

few! - allowed researchers to model the otherwise unexplained variability of

some time series in a more systematic fashion and, in the process, to represent

(at least) two common properties of numerous series, clustered volatility and

the leptokurtosis (or fat tailedness) of unconditional distributions. The third

section considers Granger’s radical reformulation of the old nonsense correlation

problem, a consequence of the unre‡ective use of non-stationary data, and his

new solution of it - paradise found? - based on the concept of cointegration.

Because Granger’s name will (also) be forever linked to the problem of causality

- even if this was not the reason he was awarded the Prize - the fourth section

provides a brief but critical review of this literature, as well as some of the

laureates’ other contributions. The …fth section then provides the rationale for

the question mark in the title: it re‡ects on several practical and methodological

criticisms of the "revolution" in time series econometrics, with emphasis on the

particular concerns of heterodox economists.

2 Paradise Lost and Found, Part I

Consider the annual rate of return on the American stock market from 1871 to

2002, as reported in Shiller (2003). As the histogram in Figure 1 reveals, the dis-

tribution of returns is fatter tailed than the (superimposed) normal distribution

or, as Mandelbrot (1963) was one of the …rst to appreciate, "extreme values"

are more common in economics than in nature. (Inasmuch as Mandelbrot and

his intellectual heirs have been most interested in …nancial market data, this

seems an appropriate point of departure.) The plot of the squares of these re-

turns in Figure 2 also hints, however, that if one were to model these returns as

independent draws from some leptokurtic distribution, important information

would be lost. In particular, it seems that extreme returns were more common

when returns in the previous period(s) were also extreme, a phenomenon known
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as volatility clustering. One reason for the immediate success of ARCH models,

…rst introduced in Engle (1982), was their consistency with both features.

[Insert Figures 1 and 2 About Here]

To illustrate, consider another sort of time series, an important but under-

studied element of labor market behavior, the recipient rate for unemployment

insurance (UI) in the United States between 1950 and 1997, as depicted in Fig-

ure 3. The recipient rate, the ratio of insured to total unemployment, is an

imperfect measure of UI utilization: while the collection rate and fraction of

insured unemployment (Blank & Card 1991) are perhaps more intuitive mea-

sures, both are more di¢cult to measure.2 As Figure 3 shows, this rate peaked,

at close to 100 percent, in the early 1950s, but has fallen, more or less steadily,

ever since, with two sharp declines in the mid 1960s and early 1980s. At the

end of the sample period, it stood at 39 percent, close to its nadir of 36 percent

in 1984.

[Insert Figure 3 About Here]

The simplest dynamic model of the recipient rate would perhaps assume that

its di¤erence from one year to the next, ¢RECt , was equal to:

¢RECt = β0 +
Pp

j=1 β j¢RECt¡j + ut (1)

where ut is some mean zero, constant variance error or "innovation." Under this

speci…cation, the expected annual change in the recipient rate will be β 0/(1 ¡
Pp

j=1 βj) over the long run, but the expected change in any one year, conditional

on the history of past changes, can be higher or lower than this. The standard

speci…cation tests reveal p = 3 to be a reasonable choice, and least squares

estimation of (1) produces:

2 The insured unemployment rate is itself de…ned to be the ratio of UI claims to covered
employment, but not all workers are covered and not all claims are honored. Inasmuch as
both the proportion of covered workers and the disquali…cation rates have varied over time,
‡uctuations in the recipient rate must therefore be interpreted with some care.
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¢RECt = ¡2.38 ¡ 0.33¢RECt¡1 ¡ 0.42¢RECt¡2 ¡ 0.35¢RECt¡3 + ût

(1.02) (0.15) (0.14) (0.13) (2)

R2 = 0.27 BP (1) = 0.58 BP (2) = 1.80

where the numbers in parantheses are standard errors and BP (x) are Breusch-

Godfrey test statistics, which indicate that the null hypothesis of no serial corre-

lation cannot be rejected at even the 10% level. The estimated annual decrease

in the recipient rate in the long run is 1.13 percentage points, which exceeds the

sample mean of 0.98, but as the comparison of actual di¤erences and (one) step

ahead forecasts in Figure 4 hints, the information contained in past di¤erences

could be useful to those who, for example, set UI premia.

[Insert Figure 4 About Here]

It is not clear, however, how con…dent policy-makers should be about these

forecasts, even if the simple model that produced them is believed to be "sensible."

The reason for this is that the standard con…dence intervals for such forecasts

assume that both the conditional and unconditional variances of the error term

ut are constant and equal. And while applied econometricians have known for

decades how to incorporate some forms of heteroscedasticty into their models,

none of the proposed variations systematically captured the intuition of most

policy-makers that (a) some periods are more turbulent than others and (b) in

such periods, forecast con…dence is diminished.

To see whether UI claim behavior exhibits such turbulence, consider the

behavior of the squared residuals û2
t from this model over time, as depicted in

Figure 5. If clusters were present, these squared residuals should persistently

exceed their sample mean, the horizontal line in the same diagram, for sustained

periods of time. With the exception of a run of three years in the late 1950s -

which comes as a surprise inasmuch as this has never been considered a turbulent

period from the perspective of the UI program - there is little evidence of this.
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[Insert Figure 5 About Here]

A more formal test of whether or not the introduction of ARCH e¤ects is

warranted was …rst proposed in Engle (1982): in an auxiliary regression of the

squared residuals on a constant and q lags of themselves, the product of the

sample size T and R2 will be distributed χ2(q) under the null hypothesis of no

ARCH e¤ects. Consistent with Figure 5, the null cannot be rejected at the

10% level - or for that matter, the 50% level - in this model.

In this context, it is still useful to understand how such e¤ects could be

incorporated into the model. In the spirit of Engle (1982), suppose the error

term ut is equal to vt

q
δo + δ1u2

t¡1, where vt is an independent and identically

distributed (iid) random variable with mean 0 and variance 1, and the parame-

ters are restricted such that δo > 0 and 0 · δ1 < 1. It is not di¢cult to show

that the unconditional variance of ut will be constant and equal to δo/(1 ¡ δ1)

- the reason for the restrictions on δo and δ1 - but that, conditional on u2
t¡1,

the variance of ut+k, k = 0, 1, .., is δo(1 + δ1 + δ2
1 + ... + δk¡2

1 ) + δk¡1
1 u2

t¡1.

Furthermore, the kurtosis of the (unconditional) distribution of innovations is

3(1¡δ2
1)/(1¡3δ2

1) which exceeds that of the normal (which is 3) if δ1 ¸ 0, and is

therefore consistent with "fat tails." This is the ARCH (1) model but in most

applications with high(er) frequency data, a natural extension of this model,

ARCH(p), is needed, in which ut = vt

q
δo + δ1u2

t¡1 + δ2u2
t¡2 + ... + δpu2

t¡p.

In his …rst illustration of the concept, for example, Engle (1982) …t an

ARCH(4) to a similar (autoregressive, that is) model of quarterly in‡ation

rates in the UK and soon after, Engle & Kraft (1983) would conclude that an

ARCH(8) model was needed to represent clustered volaility in quarterly US in-

‡ation rates. And while other macroeconomic applications soon followed, it had

become clear, Diebold (2004) believes, that evidence of ARCH e¤ects in macro

data was mixed unlike, or so it soon seemed, …nancial market data. The "new

…nancial econometrics" tidal wave that followed can be traced to a small number

of papers: French, Schwert & Stambaugh (1987) were the …rst to estimate the

relationship between stock market returns and "predictable volatility," Engle,
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Lilien & Robins (1987) introduced the ARCH-M model (about which below)

to calculate time-varying risk premia in the term structure of interest rates,

and Bollerslev, Engle & Wooldridge (1988) would reframe the empirical capital

asset pricing model (CAPM) in terms of conditional variances. (Intellectual

historians will perhaps wonder, with some cause, about the broader political

and cultural determinants of this tidal wave.)

To return to the behavior of recipient rates, the maximum likelihood esti-

mates for the previous model supplemented with ARCH(1) errors are:

¢RECt = ¡2.32 ¡ 0.28¢RECt¡1 ¡ 0.41¢RECt¡2 ¡ 0.32¢RECt¡3 + ût

(0.92) (0.19) (0.13) (0.12)

σ2
t = 32.1 + 0.16u2

t¡1 (3)

(12.1) (0.32)

where σ2
t is the conditional variance of ut. Given the results of the Engle

(1982) test, it comes as no surprise that this has little e¤ect: the estimated

coe¢cients on the ¢RECt¡k variables, and their standard errors, are almost

the same as in (2), and the coe¢cient on u2
t¡1, which drives the ARCH e¤ect,

is statistically insigni…cant. The size of the last coe¢cient calls for comment,

however: if signi…cant, it would mean that a squared residual of 100 in one

year, which is substantial but not implausible in this context, would push the

conditional variance in the next year to 48.1, or 25% above the unconditional

variance of 38.2 and, as a result, diminish forecast con…dence.

Two of ARCH’s numerous descendants also deserve mention in this context.

Generalized ARCH, or GARCH, models, the brainchild of Tim Bollerslev (1982),

a student and later collaborator of Engle’s, have become even more common

than their ancestor. A GARCH(q, r) speci…cation, for example, assumes that

the conditional variance of the error in period t, σ2
t , is δo + δ1u

2
t¡1 + δ2u

2
t¡2 +

... + δqu
2
t¡q + τ 1σ

2
t¡r+ ... + τrσ

2
t¡r , but this is more parsimonious than …rst

seems: in practice, GARCH(1, 1) or GARCH(2, 1) are often su¢cient.
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If heterodox economists should be interested in GARCH models for practical

reasons, the ARCH in mean or ARCH-M speci…cation, …rst proposed in Engle,

Lilien & Robins (1987), is important for substantive reasons. In the UI exam-

ple, it could have been the case that the recipient rate was itself a function of

labor market turbulence or, to be more precise, conditional variance both past

and present:

¢RECt = β0 +
Pp

j=1 β j¢RECt¡j +
Pw

k=0 βkσ2
t¡k + ut

where the conditional variance of ut is modelled as an ARCH or GARCH process.

In a similar vein, the determination of wages, or even the "division of the working

day," could re‡ect not just relative bargaining power, however measured, but

also the conditional turbulence of this process. (As alluded to earlier, it was

not Marx that inspired Engle, Lilien & Robins (1987), however, but William

Sharpe, one of the founders of modern …nance!)

It should be noted, however, that in small samples like this one - and some-

times in much more substantial ones - the algorithms that econometric software

programs use to calculate the maxima of likelihood functions often fail to con-

verge. (Over some of its domain, the likelihood function is so "‡at" that local

maxima are di¢cult to …nd.) Indeed, in this particular case, where the evi-

dence of ARCH e¤ects is far from decisive, it would not surprise experienced

practitioners that neither GARCH(1, 1) nor ARCH ¡M (1) converged reliably.)

Finally, the development of ARCH owes at least little to the in‡uence of

David Hendry and the "LSE approach" to econometrics: in his interview

with Diebold (2003), Engle recalls that the …rst ARCH paper (Engle 1982)

was started, and then …nished, while on leave at LSE, and that Hendry’s in‡u-

ence even extended to the choice of name and memorable acronym. Because

cointegration is also consistent with, perhaps even a hallmark of, this approach,

a more detailed discussion will be postponed until the …fth section.
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3 Paradise Lost and Found, Part II

Cointegration theory is perhaps best understood as a new approach to the iden-

ti…cation of long-run (equilibrium) relationships in data with stochastic trends.

Few recent contributions to economics have in‡uenced its actual practice more:

a keyword search of EconLit shows almost three and a half thousand papers on

"cointegration," most of them published since 1990, a number that is more than

four …fths that for "Keynes" or more than double that for "Marx." The two

most common sorts of application have been the reconsideration of traditional

(that is, orthodox) macroeconomic relationships - the list of canonical examples

includes the consumption function (Banarjee & Hendry, 1992), the demand for

money (Dickey, Jansen & Thornton, 1991) and purchasing power parity (Taylor,

l995) - and the behavior of asset prices (Campbell & Shiller, 1987).

Interest in cointegration has not been limited to the mainstream, however.

Zacharias’ (2001) reevaluation of the evidence for pro…t rate equalization in

the United States, for example, has a distinct classical, even Marxian, ‡avor,

and Loranger (2001) speci…es a "regulationist" model of the Canadian economy

in these terms. And despite the concerns of Davidson (1991) about reliance

on probabilistic methods in an uncertain world, a substantial number of post

Keynesians have used these methods: in a series of papers, Atesoglu (2000, 2002)

…nds support for what he calls the Keynes-Weintraub-Davidson (!) model of

employment, while Lopez & Alberto (2000) discern the operation of Thirlwall’s

Law in several Latin American economies. Cliometricians have sometimes

adopted this framework as well: Rappoport & White (1993), for example,

conclude that it rea¢rms the once traditional view that a "bubble" in‡ated the

pre-Depression stock market.

To understand better both its appeal and possible limitations, consider the

data on recipient rates once more. The simple and self-referential model of the

previous section cannot meet the expectations of those heterodox (and other)

economists interested in structure : it is almost silent on the possible causes of

claim behavior.
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In contrast, Blank & Card (1991) conclude that much of the decline in

the recipient rate over the last …ve decades can be attributed to a decrease in

collection rates, which prompts the question why so many eligible workers do

not, or are somehow unable to, claim UI bene…ts. To answer it, Blank & Card

(1991) exploit the substantial interstate variation in recipient rates, and …nd

that a combination of economic and social factors - from the replacement rate,

the ratio of bene…ts to wages, and the mean duration of jobless spells to the

shares of non-white, female and unionized workers - can explain a substantial

fraction of this variation, consistent with Matthews, Kandilov & Maxwell (2002)

who also discerm evidence of a "political culture" e¤ect.

For purposes of exposition, the in‡uence of a "consolidated" explanatory

variable, denoted Z , is considered …rst. A scatter plot of REC and Z , depicted

in Figure 6, holds considerable promise, and the results of a simple bivariate

regression seems to con…rm this:

REC = 102.8 ¡ 0.51Z + ût (4)

(2.68) (0.29)

¹R2 = 0.86 DW = 1.09

Under the usual (if unfortunate) rhetorical conventions, this streamlined model

"explains" 86% of the variation in recipient rates over time, and the in‡uence

of Z is statistically signi…cant at the 1% (0.1%, in fact) level. More impressive,

it passes a battery of diagnostic checks, including the so-called RESET test

for omitted variables and/or misspeci…ed functional form, the CUSUM test for

structural change and Breusch-Pagan test for non-spherical (heteroscedastic)

errors.3

[Insert Figure 6 About Here]

3 In fact, except for Ramsey’s RESET test, it passes all of these tests with ‡ying colors. In
the RESET case, the null of no omitted variables can just be rejected at the 5% level, but not
at the 1% level. Some econometricians would see this as a "red ‡ag," but most, I suspect,
would not.
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The one obvious cause for concern, in fact, is the smallish Durbin-Watson

statistic, consistent with the presence of serial correlation. The usual (…rst

order) correction appears to solve the problem, however - the Durbin-Watson

statistic of the transformed model increases, to 1.81 - and has almost no e¤ect

on the estimated coe¢cients and some, but not much, e¤ect on their standard

errors, so is not reported here. The step ahead forecasts based on this pattern

of serial correlation seem to track actual recipient rates well, as evidenced in

Figure 7.

[Insert Figure 7 About Here]

As a …nal check, a narrow(er) variable, the replacement rate, REPt , was

added to the model. After correction for serial correlation, the results are:

REC = ¡30.0 ¡ 0.53Z + 3.85REP + ût (5)

(33.9) (0.09) (0.97)

¹R2 = 0.65 DW = 1.67 ρ = 0.76

The importance of the consolidated variable Z seems to be con…rmed: its esti-

mated coe¢cient is close to its previous value and remains signi…cant at the 1%

level. On the other hand, consistent with the borderline results for the RESET

test, it appears that Z does not capture the e¤ects of the replacement rate on

claim behavior. Both the sign and size of the REP coe¢cient are plausible - a

one percent increase in the (relative) value of UI bene…ts is associated with an

almost four percent increase in the recipient rate - and it, too, is signi…cant at

the 1% level.

So what, if anything, is wrong with (5), and where does Granger …t in?

The immediate problem is that what Z "consolidates" isn’t data on UI claim

behavior but rather the weather where I live: it is the cumulative snowfall in

Burlington, Vermont, in meters and with normalized initial value, over the same

period!4 This is the sort of "structure" that econometricians can do without.
4 Readers familiar with Hendry’s (1980) in‡uential "Alchemy or Science?" paper will have
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There are two natural responses to the "snowfall model." First, unlike civil

unions or universal health care for children, this is not a case of Vermont leading

the nation: whatever the econometrics seem to tell us, the weather in Vermont

is neither the cause nor the e¤ect of UI utilization in New Mexico or Louisiana.

Second, it would be a mistake to dismiss this exercise because no sensible econo-

mist would ever propose such a model: the real lesson here is that someone

could have substituted another, more "plausible," trended series, with results

that seem reasonable but are no more correct.

This doesn’t explain, however, how such econometric calamaties occur. The

venerable Yule (1926) is often considered the …rst to have identi…ed (and named)

the nonsense correlation problem - his own example concerned the positive

correlation between the ratio of Church of England to all British marriages and

the mortality rates - but Frain (1995) quotes the lesser known Hooker (1901),

who observed that:

The application of the theory of correlation to economic phenomena

frequently presents many di¢culties, more especially where the el-

ement of time is involved; and it by no means follows as a matter

of course that a high correlation coe¢cient is a proof of a causal

connection between any two variables, or that a low coe¢cient is to

be interpreted as demonstrating the absence of such a connection.

(Frain 1995: 13)

(As Hendry (2004) reminds us, it was the "Yule critique" that Keynes (1940)

would later invoke in his assessment of Jan Tinbergen’s work and, in broader

terms, macroeconometrics.) Hooker’s (1901) intuition, later formalized in

Granger & Newbold’s (1974) seminal paper on spurious regression, is that the

use of non-stationary data - in particular, "trended" time series - undermines

classical inference: there is no reson to suppose, for example, that the distrib-

ution of the t statistic will be the familiar one, so that one cannot conclude, on

seen this "trick" before. Stock & Watson’s (1988) "tale of two econometricians" is a more
recent variation. To write it o¤ as no more than a rhetorical trick, however, is to underestimate
the challenge to applied econometricians.
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the basis of (4), that Z/snowfall matters. (It was not until much later, however,

that the critical t values could be calculated.) In heuristic terms, when two

random variables rise or fall over time, correlation is inevitable, whether or not

there is a relationship between them.

The obvious solution to the nonsense correlation problem is to …rst detrend

the data and then (re)estimate the model with deviations from trend, but there

are two problems with this. First, it is seldom obvious how, or even if, a partic-

ular time series should be detrended. And second, information about possible

relationships between levels is lost in the process, and economists are often more

interested in these. In the UI example, the secular relationship between the re-

cipient and replacement rates is no less important than the short(er) run e¤ects

of ‡uctuations in one on the other. Or, to use a more conventional example,

data on the deviations from trend in consumption and disposable income cannot

tell us much about autonomous consumption or its level.

To consider the …rst problem in more detail, it should …rst be noted that

for decades, econometricians who were sensitive to the "Yule critique" allowed

for deterministic trends. In practice, this meant that trend deviations were

calculated as the residuals of a regression of the relevant series on some simple

polynomial in time. For the UI data, the recipient rate and cumulative snowfall

were each regressed on a quadratic time function and when the deviations from

trend in the former, denoted RECt ¡ TRENDRECt , are then regressed on

deviations from trend in the latter, Zt ¡ TRENDZt, the results are:

REC ¡ TRENDREC = 0.35 + 0.05(Z ¡ TRENDZ ) + bu (6)

(1.35)(0.82)

¹R2 = ¡0.02 DW = 1.83 ρ = 0.35

after correction for …rst order serial correlation. And with these results comes

a small, and perhaps premature, sense of relief: someone with the presence

of mind to detrend the data would have decisively rejected the hypothesis that

snowfall is a determinant of UI recipient rates. Better, perhaps, if the detrended
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replacement rate is added to the model, the results are:

REC ¡ TRENDREC = ¡0.10 ¡ 0.97(Z ¡ T RENDZ) + 3.76(REP ¡ T RENDREP )

(1.29) (0.79) (1.04)

¹R2 = 0.19 DW = 1.48 ρ = 0.40

Snowfall still doesn’t matter - even if the rejection is much less emphatic than

it was in (6) - but replacement rates do.

To situate Granger & Newbold’s (1974) contribution, reconsider the funda-

mental premise of this exercise, that all of the variables are stationary around

some deterministic trend or, as this property is sometimes called, trend station-

ary. This means that each time series Xt can be decomposed into the sum of (at

least) two parts, TRENDt + CY CLEt , where T REN Dt is some non-random

function, more often than not of time, and CY CLEt is an autocorrelated series

with mean zero and …nite and constant variance. In the case of cumulative

snowfall, for example, TRENDt was estimated to be 25.7 + 2.55t ¡ 0.002t2 for

t = Y EAR ¡ 1950. As a consequence, the best forecast of Xt+k in period t

tends to T RENDt+k, its trend value, as k increases. In other wrods, the e¤ects

of CY CLEt are assumed to wear out over time, a formulation that reinforces

the (too) sharp distinction between the short and long runs that is characteristic

of much empirical research.

But as some Vermonters would put it, no one but a "‡atlander" would model

cumulative snowfall as a trend stationary process: last winter’s substantial

snows have increased forecasts of cumulative snowfall one, …ve, ten or even …fty

years from now the same amount. Conventional wisdom about winter is better

represented as:

Zt ¡ Zt¡1 = θZ + ut (7)

where θZ can be viewed as "normal" annual snowfall and ut as the annual

surplus or de…cit relative to this norm, an example of a random walk with (no
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pun intended) drift. This can be rewritten, after repeated substitution, as Zt =

Z0+tθZ +
Pt¡1

j=0 ut+j or even TRENDt +CY CLEt , where T RENDt = Z0+tθZ

and CY CLEt =
Pt¡1

j=0 ut+j. The similarities to the previous decomposition are

more cosmetic than real, however. The trend component is not deterministic,

but random, since the value of Z0 must itself be random. And the remainder,
Pt¡1

j=0 ut+j , cannot be stationary, since the mean is zero but the variance is

neither constant nor, for that matter, even bounded: limt!1 E(
Pt¡1

j=0 ut+j)
2 =

limt!1 t E(u2) = 1 as t ! 1.

Under these conditions, cumulative snowfall will be di¤erence stationary,

however: ¢Zt will be stationary, with mean θZ and variance E(u2
t ). In broader

terms, it is said that a series Xt is integrated of order d, written Xt » I(d), if

its dth di¤erence is stationary: in this case, Zt » I(1). Linear functions of I(1)

variables will of course be I(1) and, with an important class of exceptions to

be discussed later, a linear combination of I(1) variables will also be I(1). (In

fact, if Xt » I(d) and Yt » I(e), then αXt + βYt » I(f ), where f = max[d, e].)

This has two important implications. First, if RECt is also I(1), the re-

searcher must contend with the modern version of the Yule critique, the problem

of spurious regression. In what would soon become "one of the most in‡uential

Monte Carlo studies of all time" (Phillips 1997, p. 273), Granger & Newbold

(1974) constructed 100 pairs of independent I(1) variables and found that in

simple bivariate regressions, the hypothesis that the slope coe¢cient was zero

was rejected (at the 5% level) almost 80 percent of the time for conventional

critical values of the t statistic. In addition, they found that in most cases,

the R2 was surprisingly high, but the Durbin-Watson statistic, the usual mea-

sure of serial correlation, was low, and this combination is still considered an

important, if informal, diagnostic. (It should be noted, therefore, that the …rst

results for (3) should have sounded the alarm: the R2 is 0.86 but the DW is

about 1.) Granger recalls that when he …rst presented the results in a seminar

at LSE, they were "met with total disbelief ...[t]heir reaction was that we must

have gottten the Monte Carlo wrong, [that] we must have done the program-

ming wrong" so that if "I had been part of the LSE group, they might well have
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persuaded me not to have done that research at that point" (Phillips, 1997, p.

262).5

A little more than a decade later, Phillips (1986), whose later contributions

to time series econometrics would rival Granger’s, provided the requisite theo-

retical foundations for these results. In particular, he showed that as sample

size increased, so, too, would the value of the t statistic, so that rejection of the

null of a zero slope coe¢cient was, under the usual conventions, inevitable, but

that the value of the Durbin Watson statistic tended to 0.

The second implication is an immediate consequence of the properties of

integrated time series: if snowfall is indeed an I(1) process, there is no reason

to believe that the measured deviations from an assumed deterministic trend

would be stationary, which undermines the conclusions drawn from the modi…ed

deviations-from-trend model. In other words, the subsequent rejection of the

null that snowfall matters was not as decisive as …rst seemed and, perhaps

worse, if snowfall did matter, this transformation could well have obscured its

role! From the perspective of most practitioners, then, the classi…cation of

individual series as trend or di¤erence stationary had become a critical …rst

step in model speci…cation.

(This is perhaps not the place for a detailed discussion of the various unit

root tests available to researchers, except to note that the most popular of

these - the augmented Dickey-Fuller (1979) and Phillips-Perron (1987) tests, for

example - were derived under the null hypothesis of di¤erence stationarity, so

that failure to reject is interpreted as evidence in favor of a unit root. The

so-called KPSS test proposed in Kwiatkowski, Phillips, Schmidt & Shin (1992)

is the best known exception. For the series considered here, the augmented

Dickey-Fuller test indicates that the null cannot be rejected for REC , REP

or, consistent with the intuition of Vermonters, Z , and the KPSS results are

consistent with this: the null of trend stationarity is rejected at the 10% level

for REC, REP and Z . It should be noted, however, that the power of these
5 On the other hand, the intuition that some economic relationships were better estimated

with di¤erenced data was not novel. Hendry (2004) notes that Fisher (1962) and others had
recommended the practice.
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tests in small samples and against "local alternatives" if often poor, an issue

that will be revisited later.)

If, on this basis, the relationship between recipient rates and cumulative

snowfall is estimated in …rst di¤erences, the results are:

¢REC = ¡0.52 ¡ 0.19¢Z + ût (8)

(4.01) (1.61)

¹R2 = 0.00 DW = 2.09 ρ = ¡0.14

after correction for serial correlation. The rejection of the pure snowfall model

is no less decisive than it was when deviations from some deterministic trend

were used. If the …rst di¤erences in replacement rates and the duration of un-

employment are then added to the model, the results become:

¢REC = ¡0.41 ¡ 0.18¢Z + 4.67¢REP + û

(3.62) (1.44) (0.93) (9)

¹R2 = 0.33 DW = 1.89 ρ = 0.09

Snowfall is still statistically insigni…cant at any level and the in‡uence of the

replacement rate is, in a limited sense, con…rmed. (The caveat would lose

some of its force if the second result survived the addition of other plausible

determinants of UI claim behavior.)

As mentioned earlier, the second problem with models based on transformed

data, whether deviations from deterministic trend or …rst di¤erences, is that

information about relationships between levels is lost. If the data are trend

stationary, the problem is easily solved: it is an implication of the Frisch-

Waugh (1933) Theorem, perhaps better known as the partialling out result,

that the addition of a time trend to a model is equivalent to the transformed

model in which each variable is instead detrended.

If the data are di¤erence stationary, the problem is more complicated, and it

is Granger’s solution, and his appreciation for its broad(er) implications, rather

19



than his other in‡uential contributions to econometrics, that are featured in

his Nobel citation. What this solution shares with other recent econometric

innovations is that it was both di¢cult to see but almost "obvious" once seen.

Granger’s own description of his epiphany is instructive:

I do not remember where it took place now, but [David Hendry] was

saying that he had a case where had two I(1) variables, but their

di¤erence was I(0), and I said that is not possible, speaking as a

theorist ... So I went away to prove I was right, and I managed to

prove that he was right. Once I realized this was possible, then

I immediately saw how it was related to ... [the] error correction

model and their balancing. So, in a sense, all the main results of

cointegration came together in a few minutes. I mean, without any

proof, at least not any deep proof, I just sort of saw what was needed

... [and] I could see immediately what the main results were going

to be ... It is one of those things that, once pointed out to people,

all kinds of other things made sense, and I think that is why it was

accepted so readily. (Phillips, 1997, pp. 274-27)

Hendry’s (2004) own account of this exchange provides some additional con-

text. The members of the "LSE school" had wrestled with the representation

of equilibrium relationships and disequilibrium dynamics in non-stationary data

for some time. By the late 1970s, there was a consensus of sorts that error cor-

rection models - which relied on precise combinations of data in di¤erences and

levels, and about which more below - were often adequate. (The intuition for

such models, Hendry (2004) believes, can be traced back to Klein’s (1953) em-

phasis on the "great ratios" of economics: total wages and national income are

both trended, for example, but their ratio or, expressed in natural logarithms,

their di¤erence, did not seem to be.) The problem was that the solution was

based on "ocular econometrics" (Hendry, 2004, p. 198) and the imposition of a

priori structure.

To cultivate some intuition for this solution, recall that linear combinations of
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nonstationary I(1) variables are, as a rule, also I(1), so that Granger’s suspicions

about Hendry’s claim were, in some sense, well-founded. This means, for

example, that if Yt and Xt are both I(1), the linear combination Yt ¡ βXt =

α + ut - that is, the combination embedded in the classical linear model - will

also be I(1), as will (therefore) the error term ut . In the absence of some sort of

"equilibrium relationship" between Yt and Xt, the two series will therefore tend

to drift apart from one another over time. But if there is such a relationship,

some sort of mechanism that prevents such drift, there will exist one (and, in

this case, no more than one) combination such that Yt ¡ βXt , and therefore

ut , will be stationary or I(0). In this special case, the two variables are said to

be cointegrated, the term that Granger (1981) coined almost two decades ago.

To be more precise, the vector of N random variables Xt = (X1
t ,X 2

t , ..., XN
t )

will be cointegrated of order d,b, denoted Xt » CI(d, b), if each X i
t » I(d)

and there exists some cointegrating vector ¯ = (β1, β2, ..., βN ) such that Zt =
PN

i=1 β iX i
t » I(d ¡ b). There can be at most N ¡ 1 such vectors, each of

them unique up to a scale factor, but there will often be fewer. The most

common procedures to determine this number, and therefore the number of

equilibrium relationships, are those described in Johansen (1988), another pre-

eminent contributor to the literature. So in the simple bivariate case, if Yt

and Xt are both I(1), then each will be non-stationary in levels but stationary

in …rst di¤erences, but if, in addition, (Yt , Xt) is CI(1, 1), then some linear

combination Yt ¡ βXt will also be stationary.

Murray’s (1994) variation on the drunkard’s walk metaphor, the standard

illustration of the most famous I(1) process, the random walk, provides some

homespun intuition. In the parable of the "drunk and the dog," it is impossible

to predict where the next steps of either will take them - in which case the best

forecast of whether each will be a few hours from now is where each started,

which isn’t much of a prediction - unless the dog is hers, in which case the two

never drift far apart. It will still be di¢cult to predict where the pair will be,

but the distance between them will be stationary. Or, in other words, their

paths will be cointegrated.
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From this intuition comes the almost "obvious" test for cointegration …rst

proposed in Engle & Granger (1987), perhaps the most cited paper in either

laureate’s vita. In terms of UI claim behavior, if RECt and REPt are CI(1, 1),

it should be that RECt ¡ α ¡ βREPt = ut is not I(1) but I(0) - that is,

stationary - for some β. We do not know the "true" value of β or observe

the "true" errors ut , but there are natural proxies for both, namely the least

squares estimates and the associated residuals. The Engle-Granger test is, in

e¤ect, a unit root test of the residuals, where rejection of the null (di¤erence

stationarity) is interpreted as (indirect, to be sure) evidence of cointegration.

In this case, it is di¢cult to reject - for some speci…cations of the test, it can be

rejected at the 10% level, but no lower - so that the evidence of an equilibirum

relationship between REC and REP is, at best, mixed. (This shouldn’t come

as much of a surprise: this is, after all, a "toy model.")

The Granger Representation Theorem, …rst articulated in Granger and Weiss

(1983), then provides the desired relationship between levels and (…rst or other)

di¤erences of cointegrated time series. As the previous quotation and the sub-

sequent discussion both hinted, the connection can be described in terms of the

error correction models or ECMs that predated this work. (The most familiar

ECM is perhaps the DHSY model of consumption (Davidson, Hendry, Srba &

Yeo, 1978) but (the other) Phillips’ (1957) much earlier work on stabilization is

another example.)

To illustrate, consider a dynamic version of the simple bivariate model, Yt =

γ0 + γ1Xt + γ2Yt¡1 + γ3Xt¡1 + et , which has the steady state equilibrium

Y = α + βX , where α = γ0/(1 ¡ γ2) and β = (γ1 + γ3)/(1 ¡ γ2). It is not

di¢cult to show that the model can be rewritten as:

¢Yt = γ1¢Xt + (γ2 ¡ 1)(Yt¡1 ¡ α ¡ βXt¡1) + et (10)

This is the so-called error correction form: period-to-period ‡uctuations in Yt

depend both on ‡uctuations in Xt and the extent to which the model was in

disequilibrium the previous period, Yt¡1 ¡ α ¡ βXt¡1. If (Yt, Xt) » CI(1, 1),
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then all of the variables in the ECM are I(0) and its coe¢cients can be estimated

with standard (classical) methods. If Yt and Xt are not cointegrated, on the

other hand, then Yt¡1 ¡α¡βXt¡1 will not be stationary, and classical methods

are inappropriate.

To provide a more formal statement of the theorem, recall that if the N

random variables Xt » CI(d,b), there will exist some r£ N matrix B of rank r

such that the r random variables Zt = B0Xt » I(0). (This is just a restatement

of the previous de…nition, where the rows of B0 are the cointegrating vectors.)

Now suppose that the evolution of Xt can be modelled as a vector autoregression

of order k , denoted V AR(k), a generalization of the dynamic model in the

previous paragraph:

Xt = ® + Á1Xt¡1 + Á2Xt¡2 + ... + ÁkXt¡k + ²t (11)

where ® is a column vector, and Á1, ..., Ák square matrices, of coe¢cients. The

theorem asserts that there will exist an N £ r matrix A such that:

I ¡ Á1 ¡ Á2¡... ¡ Ák= AB0 (12)

and k ¡ 1 square matrices ª1, ª2, ..., ªk¡1 such that:

¢Xt = ª1¢Xt¡1+ª2¢Xt¡2 +...+ªk¡1¢Xt¡k+1 +® ¡ AB0Xt¡1+ ²t (13)

which is the multivariate version of the error correction model.6

For the UI data, the equation we are most interested in is:

¢RECt = α1 + λ1(β1RECt¡1 + β2REPt¡1) +
Pk¡1

i=1 γ i
1¢RECt¡i (14)

+
Pk¡1

i=1 γ i
2¢REPt¡i + ε1t

where β1RECt¡1 +β2REPt¡1 or, after normalization, RECt¡1¡β 2REPt¡1, is

often understood as last period’s deviation from equilibrium, and the parameter

λ1 measures the speed of adjustment.
6 This is the version of the theorem, or at least part of it, presented in Hamilton’s (1994)

useful text.
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Engle & Granger’s (1987) two step estimator for (14) was the …rst, and re-

mains the simplest, available to time series econometricians. Building on the

work of Stock (1987), who showed that least squares estimates of the cointe-

grating vector [β̂1, β̂2] were superconsistent - that is, converged more rapidly

than usual - they demonstrated that if these estimates were substituted into

the ECM and the values of the other paramaters α1, λ1, γ
1
1, ..., γ

k¡1
1 ,γ1

2, ..., γ
k¡1
2

estimated via maximum likelihood, the results would be both consistent and

asymptotically normal.

The Johansen (1988) test reveals, however, that the evidence that RECt and

REPt are cointegrated is at best mixed. Nevertheless, for k = 4, the maximum

likelihood estimate of the (standardized) cointegrating vector is [1, 5.67], while

the estimate of λ1 is ¡0.12. So if an equilibrium relationship does exist, the

speed of adjustment is quite slow, consistent with the view that in the short

run, ‡uctuations in the replacement rate can drive claim behavior far from its

eventual "equilibrium." This said, the …tted values of the estimated ECM track

the observed …rst di¤erences remarkably well, as illustrated in Figure 8.

[Insert Figure 8 About Here]

Three extensions of the CI framework deserve special mention in this con-

text. Hylleberg, Engle, Granger & Yoo (1990) introduced the notion of seasonal

cointegration. Granger & Lee (1989) developed multicointegration to model

stock-‡ow relationships. In their example, if sales and output are CI(1, 1) then

the di¤erence, or investment in inventories, will be stationary, but the stock of

inventories will not be. If the stock of inventories and sales are also cointe-

grated, however, then sales and output will be multicointegrated. And Granger

& Swanson (1995) have considered nonlinear cointegration.

4 A Few Words About Causality and Prediction

Granger (1986) was also the …rst to notice an important connection between

CI models and his own much earlier work (Granger, 1969) on causality. In
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particular, he perceived that if a pair of economic time series was cointegrated,

then one of them must Granger cause the other. Most readers will recall

that the de…nition of Granger causality embodies two crucial axioms (Granger,

1987): uniqueness, which is the principle that the "cause" contain unique

information about the "e¤ect," and strict temporal priority. In operational

terms, this amounts to a condition on prediction variance: in crude terms, if

one stationary time series is better predicted with a second series than without

it, the latter is said to cause the former. It was not Granger’s (1969) paper

that launched a thousand cauality test ships, however, but rather Sims’ (1972):

regressing the logarithm of current nominal GNP on a number of its own lags

and lags of the logarithm of either "broad money" or the monetary base, and

then vice versa, he famously concluded that "money causes income" but that

"income does not cause money." A little more three decates later, empirical

macroeconomists continue to publish variations on this simple exercise, among

them a number of post Keynesians who believe - mistakenly, it seems to me -

that the debate with the mainstream about the endogeneity of money, or for

that matter the internal debate between structuralist and accommodationist

explanations of endogeneity, will be resolved on this basis.7 Granger himself

remains ambivalent about Sims’ (1972) paper. Much later, he would observe

that "part of the defense of the people who did not like the conclusion of [this]

paper was that this was not real causality, this was only ’Granger causality’ [and]

they kept using the phrase ... everywhere in their writings, which I thought was

very ine¢cient, but ... made my name very prominent" (Phillips, 1997, p.

272). More important, he believes that the most common form of the test,

based on a comparison of in sample …ts, violates the spirit, and perhaps the

letter, of his own de…nition, which emphasizes the importance of (out of sample)

predictability.

7 The most impressive example of this literature is perhaps Palley (1994), who uses Granger
causality tests to evaluate the orthodox, structuralist and accommodationist approaches, con-
cluding that the evidence favors the last of these.
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If Granger’s (1969) causality paper is the most visible of his other contribu-

tions to econometric theory, it remains his most controversial. Tobin’s (1970)

sharp reminder of the perils of post hoc ergo propted hoc reasoning in economics

was written in response to Friedman and Schwartz (1963), but it can also be read

as a critique of the later Sims (1972). It was for this reason that Leamer (1985)

would recommend that econometricians substitute "precedence" for "causality."

In a similar vein, Zellner (1979) dismisses the notion that causal relations can

be de…ned, or detected, without respect to economic laws.

Granger himself remains unrepentant. He believes that the test - the intu-

ition for which is found outside economics, in the work of the mathematician

Norbert Weiner - is "still the best pragmatic de…nition [or] operational de…ni-

tion" (Phillips, 1997, p. 272). And he believes that the philosphers have started

to come around:

The philosophers ... initially did not like this de…nition very much,

but in recent years several books on philosophy have discussed it in

a much more positive way, not saying that it is right, but also saying

that it is not wrong. I view that as supporting my position that it

is probably a component of what eventually will be a de…nition of

causation that is sound. (Phillips, 1997, p. 272)

At the least, Granger’s paper remains the point of departure for most "prag-

matic" discussions of causality in economics, a number of which (Hoover, 2001,

for example) have produced viable extensions or alternatives. It is also embed-

ded in other econometric concepts: it is part, for example, of the de…nition of

strong exogeneity (Engle, Hendry & Richard, 1983).

In some sense, Granger’s research on causality can be viewed as a particular

manifestation of his interest in prediction or forecasting, one that he shares with

co-laureate Engle. Published at the same time as the (now, if not then) better

known causality paper, for example, Bates & Granger (1969) were the …rst to

prove the once counterintuitive result that pooled forecasts tend to perform

better than individual ones. For those familiar with James Surowiecki’s recent
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The Wisdom of Crowds (2004), the intuition is similar: pooled forecasts allow

di¤erential biases to o¤set one another. And in the last few years, Granger

(2001) has returned to the problem of forecast evaluation.

Diebold (2004, p. 169) believes that "Engle’s preference for parametric, par-

simonious models [also re‡ects a] long-standing concern with forecasting ...[that]

guard against in-sample over…tting or data mining," but adds that he is also

responsible for several more speci…c contributions to the literature. Engle &

Yoo (1987), for example, was one of the …rst papers to explore the properties of

forecasts made on the basis of cointegrated systems. From a broader perspec-

tive, the whole ARCH framework can be understood as an attempt to produce

better forecasts, or at least better estimates of forecast error variances.

5 Trouble In Paradise?

It seems reasonable to suppose that with the increased attention that ARCH

and CI models have received since the Royal Academy’s announcement, more

economists outside the mainstream will be tempted to experiment with one or

both. There is reason to be cautious, however. The most important opera-

tional criticism of the common trends framework, for example, is that testing

for unit roots or estimating cointegrating vectors is problematic in small(ish)

samples. For the researcher armed with annual, or even quarterly, data, for ex-

ample, the bene…ts are uncertain. Miron (1991, p. 212), himself a contributor

to the technical literature, believes that "since we can never know whether the

data are trend stationary or di¤erence stationary [in …nite samples], any result

that relies on the distinction is inherently uninteresting." The implicit advice,

that researchers should …t both sorts of models to time series data, even in those

cases where test results seem decisive, strikes (at least) me as sound. For the

UI claim data, for example, the conclusion that recipient and replacement rates

share a common trend, or that short run ‡uctuations in replacement rates are

associated with substantial movements in claims, is a more robust one than it

would have been if both alternatives had not been considered.
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One of the most persuasive illustrations of this problem is Perron’s (1989)

paper on unit root tests in a world which, if trend stationary, is trend stationary

with structural breaks. It is important to appreciate that at the time the paper

was published, the conventional wisdom held that almost all macroeconomic

time series were either I(1) or I(2): Nelson & Plosser’s (1982) often cited

article, for example, found that for 13 of 14 series - the one exception was the

unemployment rate - the null hypothesis of a unit root could not be rejected.

The immediate and widespread success of Engle and Granger (1987), which

provided researchers with a tractable framework for the analysis of relationships

between such series, owed at least a little to this near consensus. What Perron

(1991) showed, however, was that if one allowed for just two structural breaks

- what he describes as the "intercept shift" of the Great Crash of 1929 and

the "slope shift" of the oil price shock of 1973 - around an otherwise stable,

trend stationary, process, the unit root hypothesis could now be rejected for

11 of the same 14 series! While later studies have quali…ed Perron’s reversal -

Zivot & Andrews (1992), for example, endogenized the selection of breakpoints

and found that 6 of the 14 series were not di¤erence stationary - the lesson for

empirical researchers, heterodox or otherwise, is clear: there is still much to be

learned from old fashioned, if more ‡exible, decompositions of economic time

series.

ARCH models su¤er from their own small sample woes, as Engle himself

understood from the beginning (Engle, Hendry & Richard, 1985). On the

basis of their own Monte Carlo studies, for example, Hwang and Periera (2003)

…nd that at least 250 observations are required to o¤set the bias problem in

ARCH(1) models, and more than 500(!) in GARCH(1,1) models. This is

seldom a constraint with daily, or even weekly, …nancial market data, but it

represents a very long time indeed when the data source is annual state UI

reports!

(At this point, little is known about the interaction of these small sample

problems. Mantalos (2001) …nds, however, that I(1) series with GARCH(1, 1)

errors, the null hypothesis tends to be overrejected or, in other words, that
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cointegration is detected more often than it should be.)

A second practical concern about ARCH/GARCH models is related to their

common, and sometimes lucrative, application to …nancial market data. The

most important of these involve the use of conditional variances to improve es-

timates of value at risk, as embodied in J. P. Morgan’s in‡uential RiskMetrics

paradigm. In this context, it is important to ask how well this class of models

capture the stylized facts of asset markets. It has already been observed, for

example, that clustered volatility and the information release e¤ect can be rep-

resented, and it can be shown that another variant, Nelson’s (1991) EGARCH,

can accommodate a leverage e¤ect.8 But there is some evidence (Brock & Pot-

ter, 1993, Brock & de Lima, 1996) that there is otherwise unmodelled nonlinear

structure in …nancial data.

The contribution of ARCH/GARCH models to the "new …nancial economet-

rics" raises broader questions, however, about the existence of such structure.

In a recent critique, Mayer (1999), for example, observes that "[Basle’s] abdi-

cation of supervisory function followed J. P. Morgan’s publication of its Risk-

Metrics methodology, which supposedly enabled banks to measure the extent of

their risks looking forward into the realm where uncertainty, not of probability,

reigns" (emphasis added).

Concerns about statistical inference in a world where outcomes are uncertain,

rather than probabilistic, extend to CI models, too. Davidson (1994) is perhaps

the most prominent of the post Keynesians to assert that economic processes are

nonergodic and thus nonstationary, and that this di¤erence cannot be "undone"

with the use of di¤erenced data. If true, the structure uncovered in such models

will often be an artifact. Lawrence Klein, the Nobel laureate who for decades

embodied the older Cowles Commission approach to macroeconometrics, shares

a practical concern about the (over)use of di¤erences, if not the post Keynesian

premise:

I do not think economic data are necessarily stationary or that

8 EGARCH models were one of the …rst asymmetric conditional variance models, and allow
the volatilties of positive and negative shocks to di¤er.
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economic processes are stationary. The technique of cointegration,

to keep di¤erencing the data until stationarity is obtained and then

relate the stationary series, I think can do damage. It does damage

in the sense that it almost always done on a bivariate or maybe

trivariate basis. That keeps the analysis simple ... but the world is

not simple.

[I] would conclude that one should accept the fact that economic

data are not stationary, relate the non-stationary data, but include

the explicit [deterministic] trends and think about what could cause

the trends in the relationship. One then uses that more complicated

relationship with trend variables. Successive di¤erencing, as it is

done in cointegration techniques, may introduce new relationation-

ships, some of which we do not want to have in our analysis (Klein,

1994, p. 34, emphasis added)

Klein (1994, p. 34) also expresses some unease that the "youngest ... generation

of econometricians simply do [this] mechanically ... and do not understand the

original data series as well as they should."

The heterodox economist who is still tempted to use the CI framework must

also consider its unfortunate - but I believe inessential - link to the "real business

cycle" or RBC paradigm. The near consensus that once existed that almost all

macro time series were I(1) or I(2) but that subsets of these formed cointegrated

systems was, and to some extent still is, linked to the rise of RBC models. (I

am tempted to add that if, as some believe, the term "heterodox" is too broad

to be useful, the widespread rejection of such models could be the exception

that proves the rule.) The reason is not di¢cult to infer: if real output has

a "strong unit root," for example, then one could interpret its evolution over

time in terms of a series of permanent shocks or, as Shapiro & Watson (1988)

concluded, as random increases in potential income, rather than a sequence of

transitory shocks around some deterministic trend/potential. Furthermore, as

King, Plosser, Stock & Watson (1988, p. 320) reminded their readers, in the
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presence of technology shocks, "balanced growth under uncertainty implies that

consumption, investment and output [will be] integrated."

There are at least two reasons to suppose that the connection is more tenuous

than …rst seems, however. First, as De Long & Summers (1988) have observed,

the strength of the unit root in real output is in some measure an artifact, a

consequence of macroeconomists’ preoccupation with post World War II data.

(Of course, to the extent that earlier data is either unavailable or unreliable, the

preoccupation is an understandable one.) Viewed from this perspective, the

diminished importance of "transitory ‡uctuations" in this period has less to do

with RBCs that with the success of old fashioned Keynesianism at stabilization,

a point also made, albeit in a di¤erent context, by Tobin (1982).

The second is that whether or not balanced growth is su¢cient for cointegra-

tion, it does not follow that it is also necessary. It is not clear that old fashioned

Keynesianism, or any other heterodox approach, requires that the evolution of

critical time series be limited to stationary ‡uctuations around some determin-

istic trend. It is not clear to me, for example, that the existence of a stochastic

trend is incompatible with some sort of Harrodian, or demand driven, model of

economic growth.

There is another, more subtle, explanation for this connection, one that is

related to current methodological debates in econometrics. The recent concern

over the use of incredible restrictions as a means of identi…cation, the fashion for

"unrestricted" vector autoregressions, the interest in cointegrating vectors and

ECMs and, to a lesser extent, the use of ARCH models can all be understood

as manifestations of the LSE or general-to-speci…c approach to empirical re-

search. Like "rational" expectations, however, general-to-speci…c is not always

the unalloyed virtue it …rst seems. For each new variable added to an ECM,

for example, there is a substantial increase in the number of new parameters to

estimate, a mild version of the curse of dimensionality. (To assume a priori

that some of these coe¢cients are zero is, of course, to impose the sort of re-

strictions that "old fashioned" econometricians have relied on for decades.) As

a result, most CI or ECM models tend to be parsimonious and while there are
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no doubt exceptions to the rule, the models of orthodox economists tend to be

"lower dimensional" than those of their heterodox counterparts (Pandit 1999).

If in‡ation is "always and everywhere a monetary phenomenon," for example,

then a bivariate VAR is su¢cient for many purposes! Pandit (1999) also cites

Klein (1999) as a source of examples of cases in which parsimonious models lead

to incorrect conclusions.

6 Conclusion

It is not uncommon for some outside the mainstream to remind us that the Bank

of Sweden’s prize for "economic science" is newer than, and di¤erent from, the

other Nobels, or to protest that it resembles a "beauty contest" that some kinds

of contestants will never win. There is some truth to this, of course: the failure

to award the prize to Joan Robinson, for example, is still incomprehensible. To

dismiss the achievements of those who have won, however, because of those who

haven’t is facile. More than a few laureates have challenged, and sometimes

informed, various heterodox traditions. It would be naive to claim, for example,

that the in‡uence of Arrow, who shared the 1972 prize, Leontief (1973), Myrdal

(1974), Lewis (1979), Tobin (1981), Nash (1994), Sen (1998), Akerlof (2001) or

Stiglitz (2001) were limited to the mainstream.

Should Engle and/or Granger be added to this illustrious list? However

durable their technical accomplishments prove, there is little doubt that each

has in‡uenced how we think about and sometimes organize economic data.
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Figure 2.  Squared Returns in the Stock Market 1871-2002
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Figure 3.  The UI Recipient Rate in the United States
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