Hippocampal Volume, PTSD, and Alcoholism in Combat Veterans

Steven H. Woodward, Ph.D.
Danny G. Kaloupek, Ph.D.
Chris C. Streeter, M.D.
Matthew O. Kimble, Ph.D.
Allan L. Reiss, M.D.
Stephan Eliez, M.D.
Lawrence L. Wald, Ph.D.
Perry F. Renshaw, M.D., Ph.D.
Blaise B. Frederick, Ph.D.
Barton Lane, M.D.

Javaid I. Sheikh, M.D.
Wendy K. Stegman, B.A.
Catherine J. Kutter, Ph.D.
Lorraine P. Stewart, M.A.
Rebecca S. Prestel, B.A.
Ned J. Arsenault, B.A.

Studies imposing rigorous control over lifetime alcohol intake have usually not found smaller hippocampal volumes in persons with posttraumatic stress disorder. Because the majority of negative studies have used adolescent samples, it has been suggested that chronicity is a necessary condition for such findings. To test the hypothesis that a smaller hippocampus in PTSD is unrelated to comorbid alcoholism or to chronicity, this study estimated hippocampal volume in a relatively large group (N=99) of combat veterans in which PTSD, lifetime alcohol abuse/dependence, and Vietnam versus Gulf War service were crossed. In subjects with histories of alcoholism, unadjusted hippocampal volume was 9% smaller in persons with PTSD than in those without PTSD. In nonalcoholic subjects, the PTSD-related difference in hippocampal volume was 3%. The failure to observe a strong association between PTSD and hippocampal volume in nonalcoholic subjects was not ascribable to younger age, reduced PTSD chronicity, or lower PTSD symptom severity. The possibility that smaller hippocampal volume is limited to groups in which PTSD is compounded by comorbid alcoholism is not necessarily incompatible with results suggesting a smaller hippocampus is predispositional to PTSD. Further examination of the role of alcoholism and other comorbid conditions in studies of brain structure and function in PTSD appears warranted.

Most neuroimaging studies of adult posttraumatic stress disorder (PTSD) have sought to reduce possible alcoholism-related confounders but have ultimately relied on comparisons in which the PTSD groups reported more alcohol exposure than the comparison subjects (1–7). Conversely, studies that have rigorously excluded comorbid alcohol abuse/dependence have usually not found smaller hippocampal volumes (8–12, but see 13). Smaller hippocampal volumes have also been reported in individuals with primary alcohol abuse/dependence (14–17), and although this effect rarely persists after adjustment for global tissue volume (18–21), there is a consensus that comorbid alcohol abuse/dependence is relevant to a complete understanding of the neurobiology of PTSD. A common approach to the problem of comorbid alcoholism has been to adjust brain volumes for lifetime consumption (3–6); however, the alcohol literature shows a scarcity of linear relationships between consumption and indices of brain structure or function (22–27). This scarcity could derive from the low reliability of retrospective self-reports (28–30) and/or the possibility that binge/withdrawal episodes, rather than “typical” drinking, account disproportionately for alcohol-related brain damage (31). To overcome these limitations, we recruited subjects from two large VA catchments with the aim of accruing a substantial number of participants diagnosed free of lifetime alcohol abuse/dependence (32).

One proposed explanation for the absence of smaller hippocampal volumes in groups that did not confounding PTSD and alcoholism is that their subjects have often been children and adolescents. To provide a partial test of this hypothesis, we compared Vietnam and Gulf War veterans with mean ages of 56 and 38 years and mean years since military trauma of approximately 36 and 9 years, respectively. Numerous effects of aging on brain morphology have been documented (33–37). Because aging was confounded with other factors known to influence PTSD, including trauma severity and socioeconomic status, the term “cohort” was used.

Method

Recruitment and Screening

The subjects were recruited through advertising and contacts with current and past patients and research volunteers. To im-
prove the recruitment of female Gulf War veterans, large mailings
were sent to candidates identified through the Defense Manpower
Database and the Fort Devens Study of Gulf War Veterans. Initial
screening established that the subjects were combat-exposed U.S.
military veterans of the Vietnam Conflict (Aug. 1964 to May 1975)
or the Persian Gulf War (August 1990 to March 1991) reporting no
current or past CNS disease, no psychosis, and no alcohol or sub-
stance abuse/dependence in the last 6 months. Initial exclusions
were based upon current alcohol or substance use, high fevers,
loss of consciousness requiring medical attention, or known con-
traindications to magnetic resonance imaging (MRI). The subjects
provided written informed consent in accordance with proced-
ures of the institutional review boards of either Stanford Univer-
sity Medical School/Veterans Administration (VA) Palo Alto
Healthcare System or Boston VA Medical Center and McLean Hos-
pital. The subjects meeting screening criteria were administered
the Clinician-Administered PTSD Scale (CAPS) (38) for PTSD
symptoms and selected axis I modules of the Structured Clinical
Interview for DSM–IV (SCID; mood episodes, psychotic and asso-
ciated symptoms, alcohol and other substance use disorders, and
anxiety and other disorders) (39). Self-report instruments in-
cluded the Combat Exposure Scale (40), the Life Events Checklist
(41), the Mississippi Scale for Combat-Related PTSD (42), the Beck
Depression Inventory (43), and the Michigan Alcoholism Screen-
ing Test—Short Form (44). Eighty-seven subjects also underwent a
structured interview to determine which Life Events Checklist en-
dorsements fulfilled PTSD criterion A and at what age they oc-
curred. Formally assessed participants were excluded if they were
determined to be negative for current military PTSD but positive
for lifetime civilian PTSD (18) or were positive for current/recent
alcohol/drug abuse (14), probable brain damage (6), or psychosis
(2). Four subjects later withdrew because of fatigue or nicotine
withdrawal; two missed their scanning appointments and were
unreachable; and five withdrew because of claustrophobia. After
scanning, 11 subjects were excluded because of an imaging arti-
fact and two to previously undiagnosed brain injury.

Subjects

The final study group included 99 military veterans. PTSD-pos-
tive subjects met criteria for current PTSD as a result of experi-
encing one or more military traumas. PTSD-negative subjects
were free of diagnosable PTSD, current or lifetime. The subjects
who were positive for alcohol abuse/dependence were classified
based upon meeting lifetime, but not current, alcohol abuse or
dependence criteria of the SCID. Additional characteristics of the
group are presented in Table 1.

Current psychotropic medications were not discontinued. Sev-
enty-nine percent of the PTSD-positive participants were taking
some form of psychotropic medication versus 21% of the PTSD-
negative participants. Sixty-one percent of the PTSD-positive par-
ticipants were taking antidepressant medications versus 6% of
the PTSD-negative participants. Twenty-eight percent of the
PTSD-positive participants were taking selective serotonin re-
uptake inhibitors (SSRIs) versus 2% of the PTSD-negative partici-
pants. Twenty-six percent of the PTSD-positive participants were
taking anticonvulsant/mood-stabilizing medications versus 2% of
the PTSD-negative participants. The subjects who were posi-
tive for alcohol abuse/dependence were not significantly more
likely than the participants who were negative for alcohol abuse/
dependence to be taking some form of psychotropic medication
(50% versus 36%, respectively; $\chi^2=1.86, df=1, n.s.$). Multway con-
tingency analyses confirmed that alcohol abuse/dependence did
not interact with any other between-subjects factor (including
PTSD status) to influence medication status.

![FIGURE 1. Total Hippocampal Volume as a Function of Posttraumatic Stress Disorder (PTSD) in Subjects Positive and Subjects Negative for Alcohol Abuse/Dependence Adjusted for the Effects of Cohort*](ajp.psychiatryonline.org)

Brain Imaging

MRI was performed by using two 1.5 T General Electric Signa
(Milwaukee) systems at similar revisions, one at the Diagnostic
Radiology Center of Veterans Affairs Palo Alto Health Care Sys-
tem and one at the Brain Imaging Center of McLean Hospital in
Belmont, Mass. During scanning, the subjects’ heads were stabi-
lized by using tape and a pump-evacuated cushion (Vac-Pac,
Olympic Medical, Seattle). Following locator scans, a 124-slice
volumetric spoiled gradient echo series was acquired (TR=35
msec, TE=6 msec, flip angle=45°, field of view=24 cm, number of
excitations=1, image matrix size=256×192). Slice thickness
ranged from 1.5 mm to 1.7 mm depending upon head size. All
cases were screened for gross structural abnormalities by a
board-certified neuroradiologist.

The raw spoiled gradient data were imported into BrainImage
(A.L. Reiss, BrainImage 5.x, Stanford University, Stanford, Calif.)
for image optimization, including correction for inhomogeneity
artifacts, resampling to cubic voxels (0.9375 mm3), positional
normalization by reference to the anterior and posterior commis-
sures and intrahemispheric fissure, skull stripping, tissue seg-
mentation based upon a constrained fuzzy algorithm (45), and
parcellation according to a modified Talairach grid (46, 47). Man-
ual delineation of the hippocampus followed a protocol de-
scribed in Kates et al. (48) in which the anterior limit is defined by
the hippocampal sulcus or alveus and the posterior limit by the
fusion of the fornix with the splenium. Delineation was per-
formed by a single rater (W.K.S.) who was trained to intarerrer
criterion within the Stanford Psychiatry Neuroimaging Laboratory
and blinded to subject identity and diagnosis.

Morphometric studies often include adjustment for body size.
This study employed two indices, supratentorial cerebral tissue
volume and supratentorial cranial volume. The former is the sum
of gray and white matter volumes following skull stripping and
tissue segmentation. The latter is the volume of the cranium as
TABLE 1. Demographic, Diagnostic, and Psychometric Characteristics of Combat Veterans by Posttraumatic Stress Disorder (PTSD) Diagnosis and Cohort

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Vietnam Era Veterans</th>
<th>Gulf War Veterans</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>With PTSD (N=38)</td>
<td>Without PTSD (N=25)</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>Gender</td>
<td>38.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Caucasian</td>
<td>25.0</td>
<td>65.8</td>
</tr>
<tr>
<td>Major depressive disorder Current</td>
<td>30.0</td>
<td>78.9</td>
</tr>
<tr>
<td>Major depressive disorder Lifetime</td>
<td>34.0</td>
<td>89.5</td>
</tr>
<tr>
<td>Lifetime alcohol abuse or dependence</td>
<td>17.0</td>
<td>44.7</td>
</tr>
</tbody>
</table>

- With PTSD (N=38) | Without PTSD (N=25) | With PTSD (N=13) | Without PTSD (N=23)

Age at onset of alcohol abuse or dependence	24.6	8.0	21.5	8.7	26.7	5.0	22.1	5.9
Years of education	14.4	1.8	15.5	2.2	14.3	1.7	15.0	1.9
Combat Exposure Scale score	29.8	9.9	24.2	8.2	19.9	11.8	8.6	6.0
Age at first criterion A event	12.4	6.2	19.3	6.7	11.1	6.9	17.0	8.4
Beck Depression Inventory score	25.0	8.9	4.6	3.7	21.0	7.3	4.3	4.0
Michigan Alcoholism Screening Test—Short Form score	3.9	4.0	2.1	3.8	3.3	3.6	0.5	0.9
Mississippi Scale for Combat-Related PTSD score	122.8	18.8	68.2	15.8	107.8	15.8	59.0	11.1
Clinician-Administered PTSD Scale total severity score	75.9	18.4	8.8	9.0	75.9	19.9	8.4	11.0
WAIS vocabulary score	47.4	12.0	55.5	7.1	45.6	12.4	52.5	8.0
WAIS digit symbol score	53.8	14.6	69.7	10.3	66.2	11.5	80.0	15.2

* p values of main effects associated with the grouping factors are indicated in columns headed PTSD, cohort, and alcohol abuse/dependence, respectively.

Statistical Analyses

Two controversies surround adjustment for “nuisance” variance in body size. Such adjustment should, under ideal circumstances, increase power and reduce the likelihood of type II error. Arndt et al. (50) argued that the reliabilities of volume ratios and residualized volumes are reduced when the correlations between components exceed r=0.90 and component reliabilities fall below 0.80; however, in this study, interregional volume correlations never exceeded r=0.80, whereas reliabilities exceeded 0.90. The second controversy concerns the validity of the most common method for “removing” differences between study groups: analysis of covariance (ANCOVA). Under standard assumptions that subjects are randomly assigned to groups and groups do not differ on covariates, ANCOVAs function only to increase power (51). If, however, groups differ on the covariate, Miller and Chapman (52) argued that there is no guarantee that the residualized grouping variable will remain faithful to the original. Here we propose that a residualized grouping variable that bears the same relations to the demographic, diagnostic, and psychometric indices as the original upholds the validity of ANCOVA even when groups differ on the covariate. In this study, some of the covariates exhibited main effects that are the focus of another article (unpublished study by Woodward et al.); however, in no case did a residualized grouping variable diverge substantially from the original in its relations to the obtained demographic, diagnostic, and psychometric indices. In view of these arguments, statistical tests included ANOVAs applied to unadjusted hippocampal volumes and ANCOVAs adjusting for cerebral tissue volume, cranial volume, and WAIS vocabulary score. Omnibus analyses are accompanied...
by tests of PTSD in the alcohol abuse or dependence subgroup. Finally, selected analyses of covariation are reported.

Results

Combat-related PTSD was strongly associated with comorbid major depression, elevated Beck Depression Inventory scores, and reduced WAIS vocabulary scores. PTSD-positive subjects also performed much worse on the WAIS digit symbol substitution subtest (F=25.5, df=1, 91, p<0.001). Because of oversampling, PTSD was not associated with an elevated frequency of alcohol abuse/dependence; nevertheless, Michigan Alcoholism Screening Test—Short Form scores exhibited both a main effect of PTSD and a PTSD-by-alcohol abuse/dependence interaction deriving from especially high scores in PTSD-positive, alcohol abuse/dependence-positive subjects. Even within the alcohol abuse/dependence-negative subgroup, PTSD was associated with a small but significant elevation of Michigan Alcoholism Screening Test—Short Form scores (PTSD-positive subjects: 1.19, PTSD-negative subjects: 0.18). Generally speaking, the alcohol abuse/dependence-positive and alcohol abuse/dependence-negative subgroups were closely matched, and PTSD and alcohol abuse/dependence did not interact to influence psychometric indices. Being alcohol abuse/dependence-positive was not associated with an elevated incidence of major depressive disorder and did not interact with other factors to influence a diagnosis of major depressive disorder. Being alcohol abuse/dependence-positive was also not associated with an elevated Beck Depression Inventory score or an elevated Combat Exposure Scale score. Alcohol abuse/dependence-positive subjects did not differ in years of education and did not exhibit worse performance on the WAIS digit symbol substitution subtest. In contrast, Gulf War and Vietnam cohorts exhibited large differences in combat exposure, current PTSD severity, and digit symbol substitution performance. The former were consistent with the differing conditions of the two conflicts and the known impact of trauma severity and PTSD by alcohol abuse/dependence; nevertheless, Michigan Alcoholism Screening Test—Short Form.

A three-factor multiple analysis of variance (MANOVA) (PTSD × cohort × alcohol abuse/dependence) performed on left and right hippocampal volumes found a significant multivariate F value for PTSD (F=4.89, df=2, 90, p=0.01). As well, the hippocampus was slightly larger in the right hemisphere (4.67 ml versus 4.44 ml; t=7.30, df=98, p<0.001), but this difference exhibited no interactions with grouping factors. Hence, group effects and interactions were reestimated on total hippocampal volume. Although prior findings of smaller hippocampal volumes in PTSD have often been unilateral, no systematic directionality has emerged. Mean unadjusted total hippocampal volumes are presented for all comparisons and for selected contrasts in Table 3. The main effect of PTSD on total hippocampal volume (F=9.83, df=1, 91, p=0.002) was accompanied by a near-significant two-way interaction of PTSD and alcohol abuse/dependence (F=2.69, df=1, 91, p=0.11) and a near-significant three-way interaction of PTSD, cohort, and alcohol abuse/dependence (F=2.87, df=1, 91, p=0.09). To account for the three-way interaction, PTSD and cohort interacted significantly in the alcohol abuse/dependence-positive subjects (F=4.63, df=1, 40, p=0.04) but not the alcohol abuse/dependence-negative subgroup. In the former, PTSD was associated with smaller hippocampal volume in the Gulf War cohort (9.85 ml versus 8.17 ml) but not in the Vietnam cohort (9.24 versus 8.91 ml). To account for the two-way interaction, the

![Table 2. Intrarater and Cross-Laboratory Reliability Coefficients of Combat Veterans by Brain Region](http://www.ajp.psychiatryonline.org/doi/abs/10.1176/ajp.163.4.677)
TABLE 3. Raw Hippocampal Volumes Underlying the Major Findings of Combat Veterans

<table>
<thead>
<tr>
<th>Cohort and Diagnosis</th>
<th>Volume [ml]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vietnam era veterans (N=63)</td>
<td></td>
</tr>
<tr>
<td>With alcohol abuse/dependence (N=29)</td>
<td></td>
</tr>
<tr>
<td>With posttraumatic stress disorder (PTSD)</td>
<td></td>
</tr>
<tr>
<td>(N=18)</td>
<td></td>
</tr>
<tr>
<td>Without PTSD (N=11)</td>
<td>8.91 0.82</td>
</tr>
<tr>
<td>Without alcohol abuse/dependence (N=34)</td>
<td></td>
</tr>
<tr>
<td>With PTSD (N=20)</td>
<td>9.00 0.75</td>
</tr>
<tr>
<td>Without PTSD (N=14)</td>
<td>9.39 1.18</td>
</tr>
<tr>
<td>Gulf War veterans (N=36)</td>
<td>9.10 1.12</td>
</tr>
<tr>
<td>With alcohol abuse/dependence (N=15)</td>
<td></td>
</tr>
<tr>
<td>With PTSD (N=6)</td>
<td>8.17 0.90</td>
</tr>
<tr>
<td>Without PTSD (N=9)</td>
<td>9.85 1.11</td>
</tr>
<tr>
<td>Without alcohol abuse/dependence (N=21)</td>
<td></td>
</tr>
<tr>
<td>With PTSD (N=7)</td>
<td>8.89 0.82</td>
</tr>
<tr>
<td>Without PTSD (N=14)</td>
<td>9.14 1.10</td>
</tr>
<tr>
<td>All veterans (N=99)</td>
<td></td>
</tr>
<tr>
<td>With alcohol abuse/dependence (N=44)</td>
<td></td>
</tr>
<tr>
<td>With PTSD (N=24)</td>
<td>8.72 0.88</td>
</tr>
<tr>
<td>Without PTSD (N=20)</td>
<td>9.51 1.10</td>
</tr>
<tr>
<td>Without alcohol abuse/dependence (N=55)</td>
<td></td>
</tr>
<tr>
<td>With PTSD (N=27)</td>
<td>9.12 0.96</td>
</tr>
<tr>
<td>Without PTSD (N=28)</td>
<td>9.26 1.13</td>
</tr>
</tbody>
</table>

Discussion

The subjects with PTSD and histories of comorbid alcoholism exhibited effects on hippocampal volume similar in direction and magnitude to those reported in studies in which PTSD-positive subjects had greater lifetime exposure to alcohol than comparison subjects. Nonalcoholic PTSD-positive subjects exhibited a nonsignificant tendency (3%) toward a smaller hippocampus. Adjustment for cranial volume, total cerebral tissue volume, or vocabulary failed to uncover an effect of PTSD on hippocampal volume in nonalcoholic veterans. A comparison of PTSD effect sizes in alcoholics and nonalcoholics confirmed the possible role of alcoholism as a facilitator of the effect of PTSD on the hippocampus but introduced important caveats. The observed confidence intervals surrounding these effects are large and overlapping. The CI in the alcoholic subgroup includes small effects, whereas the CI in the nonalcoholic subgroup includes large effects. The absence of a statistically significant effect in nonalcoholics could represent a type II error.

Acknowledging these caveats, the present results raise doubts regarding certain explanations that have been advanced to explain earlier failures to find smaller hippocampal volumes in nonalcoholic PTSD-positive groups. A 27-year differential in chronicity did not result in a PTSD x cohort interaction, and although power was limited by the small size of the Gulf War PTSD comparison, the observed tendencies were contrary to a chronicity effect. Exclusion of PTSD-positive subjects with CAPS total severity scores below 65 also did not influence the results. The alcoholic and nonalcoholic subgroups had similar Combat Exposure Scale scores, CAPS total severity scores, and Beck Depression Inventory scores. Statistical power for comparisons performed within the nonalcoholic subgroup was comparable to multiple studies reporting positive findings.

A role for comorbid alcohol abuse/dependence in prior observations of smaller hippocampal volume in PTSD is tentatively supported in these data. At the same time, lifetime alcoholism was not independently associated with smaller hippocampal volume even before adjustment for total cerebral tissue volume. Deployed U.S. military veterans who do and do not meet criteria for lifetime alcoholism may have less contrastive alcohol histories than...
groups sampled from civilian populations. Nevertheless, the observed reversal of the aging-alcohol interaction could arise only if the effects of alcoholism on the hippocampus were accentuated in the Gulf War cohort, attenuated in the Vietnam cohort, or both. It is possible that biased attrition-attenuated selected group effects involved Vietnam-era sample drawn from the VA Palo Alto Healthcare System PTSD inpatient population exhibited excess age-adjusted mortality in association with alcohol and substance abuse. The survivor population would be expected to exhibit attenuated versions of neurobiological concomitants of alcohol and substance abuse preferentially associated with premature mortality. The possibility that a smaller hippocampus participates with alcohol/substance abuse to confer a predisposition to premature mortality cannot be ruled out, particularly if a smaller hippocampus is predispositional to PTSD (2), itself a consequence of exposure to life threat. This study found modest support for an inverse relationship between hippocampal volume and exposure to potentially traumatic combat events, as reported by Gurvits et al. (3).

The current observation of normal hippocampal volume in PTSD uncomplicated by alcoholism appears to contradict the findings of Gilbertson et al. (2). In a study of monozygotic twins, these authors obtained evidence that a smaller hippocampus represents an inherited predisposition to develop PTSD after trauma rather than being a consequence of trauma. These findings are not incompatible if the data of Gilbertson et al. are interpreted to indicate that a smaller hippocampus is predispositional to PTSD with comorbid alcohol abuse/dependence. Eighty-two percent of the PTSD-positive subjects of Gilbertson et al. met criteria for comorbid alcoholism. As well, the unexposed twins of their PTSD-positive alcohol abuse/dependence-positive subjects tended to exhibit higher rates of alcohol abuse/dependence (47% versus 30%) and higher scores on the Michigan Alcoholism Screening Test (6.8 versus 2.5; p=0.09; reference 44) than the unexposed twins of PTSD-negative subjects, both observations compatible with an elevated risk for primary alcoholism. Evidence of shared genetic vulnerability to combat exposure/PTSD and alcoholism (57) has been obtained from other samples drawn from the Vietnam Era Twin Registry (58).

Among the covariates used to increase the power of group comparisons of hippocampal volume, an estimate of cranial volume had simply added a random variate to hippocampal volume; however, cranial volume accounted for a significant variance in hippocampal volume. This observation is remarkable in light of the fact that the cranium expands little after age 5 or 6 (49, 59). Systematic effects on cranial volume noted in this group are considered in a separate article (unpublished study by Woodward et al.).

Received Dec. 17, 2004; revisions received Feb. 22 and April 19, 2005; accepted May 27, 2005. From the National Center for PTSD, Clinical Laboratory and Education Division and Psychology Service, VA Palo Alto Healthcare System; the National Center for PTSD, Behavioral Science Division, VA Boston Healthcare System, Boston; the Division of Psychiatry, Boston University School of Medicine, Boston; the Department of Psychology, Middlebury College, Middlebury, VT; the Department of Psychiatry and Behavioral Sciences and the Department of Radiology, Stanford University Medical School, Stanford, Calif.; the Department of Psychiatry, University of Geneva, Geneva, Switzerland; the Department of Radiology, Massachusetts General Hospital, Charlestown, Mass.; the Department of Psychiatry and the Department of Radiology, Harvard Medical School, Boston; the Brain Imaging Center, McLean Hospital, Belmont, Mass.; the Psychology Service, White River Junction Veterans Affairs Medical Center, White River Junction, VT; and the Department of Psychology, University of Oregon, Eugene, Ore. Address correspondence and reprint requests to Dr. Woodward, National Center for PTSD, Clinical Laboratory and Education Division, Mail Code 334 PTSD, VA Palo Alto HCS, 3801 Miranda Ave., Palo Alto, CA 94304; steve.woodward@med.va.gov (e-mail).

Funding for this work was provided under a VA/Department of Defense assistance agreement to Drs. Woodward and Kaloupek from the U.S. Army Medical Research and Materiel Command administered through the Institute for Medical Research, a National Institute on Alcohol Abuse and Alcoholism award (K23AA131419), and a VA Career Development Award to Dr. Streeter. Institutional and technical support was provided by the following individuals—at the VA Palo Alto Healthcare System: John E. Drace, Patricia Spezia, Carla Ambriz, and Gary E. Gold; at the VA Boston Healthcare System: Kelly Teresi, Frederick Kanter, Steven Blank, Susan Proctor, and Erica Stone; at Stanford University: Thomas J. Brosnan, Anil Patwardhan, and Eric Schmitt; at McLean Hospital: Rosemond Villafuerte, Ann Smith, and Eileen Connolly; and at the Defense Manpower Database Command: Micheal A. Dove. The authors also thank Kelvin O. Lim, Wendy R. Kates, Danny H. Mathalon, Gregory A. Miller, Daniel W. King, Craig S. Rosen, and Helena Chmura Kraemer for their help; Stephen Grate and Lori Moll for making the necessary arrangements at those institutions; and the Research Services of the VA Palo Alto and VA Boston Healthcare Systems for their support.

References
resonance imaging-based measurement of hippocampal volume in posttraumatic stress disorder related to childhood physical and sexual abuse—a preliminary report. Biol Psychiatry 1997; 41:23–32

38. Blake DD, Weathers FW, Nagy LM, Kaloupek DG, Charney DS, Keane TM: Clinician-Administered PTSD Scale for DSM-IV: Current and Lifetime Version. Boston, Boston VA Medical Center/Neurosciences Division, Behavioral Science Division; West Haven, Conn, West Haven VA Medical Center, 1997

