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ABSTRACT

Magnetic energy is believed to play amajor role in powering coronal mass ejections (CMEs). Freemagnetic energy
is associated with electric currents that give the magnetic field more energy than a purely potential (current-free) field.
For magnetic energy alone to power a CME, the energy must be sufficient to open the magnetic field to interplanetary
space, to lift the ejecta against solar gravity, and to accelerate the ejecta. However, the coronal magnetic field is very
nearly force free, and force-free fields attached to the coronal base cannot contain more energy than that of the fully
open field with the same boundary conditions. We therefore explore force-free fields containing detached magnetic
flux ropes, with the goal of finding the maximum possible energy stored in such configurations. We use a maximizing
algorithm that searches a space of four parameters to find the maximum energy solution. Our results show a broad
maximum in parameter space, with energies in excess of the open-field energy by about 18% of the corresponding
potential-field energy. Confinement of nonpotential fields close to the solar equator enhances the energy storage, with
maximumenergies generally corresponding tomore extreme confinement. This suggests that overlying potential fields
can hold down a nonpotential field, allowing substantial energy buildup.

Subject headinggs: MHD — Sun: corona — Sun: magnetic fields

1. INTRODUCTION

Coronal mass ejections (CMEs) typically expel some 5 ;1015 g
of coronal material into interplanetary space at speeds of several
hundred km s�1. The energy involved, some 1032 erg, is needed
not only to accelerate the ejecta to such speeds, but also to lift the
material against solar gravity, and most significantly, to open the
coronal magnetic field for solar plasma to escape into interplan-
etary space. A theorem by Aly (1984, 1991) and Sturrock (1991)
suggests that the energy of a fully open field is an upper limit on
the energies of force-free fields in simple geometries. Therefore,
simple force-free fields cannot store sufficient energy for all three
CME tasks. However, more complex force-free fields, in partic-
ular those containing detached magnetic flux, are not subject to
the Aly-Sturrock limit. Earlier work with detached flux has pro-
duced force-free configurations with energies beyond the Aly
limit, but in most cases barely so, with the excess only a few per-
cent of the corresponding potential-field energy (Wolfson 2003;
Flyer et al. 2004). One flux rope study using a low-�MHD sim-
ulation did somewhat better, producing nearly force-free fields
with excess energy of some 11% of the potential-field energy
(Li & Hu 2003). More complex topologies with embedded
current sheets can do still better, exceeding the open-field en-
ergy by some 36% of the potential-field energy (Choe & Cheng
2002).

This paper explores the energetics of detached force-free
magnetic flux ropes in an axisymmetric model corona. We search
systematically through a space of four parameters that char-
acterize the magnetic field in terms of its flux distribution at the
coronal base and the amount and distribution of azimuthal flux.
The latter, generally associated with shearing of the magnetic foot-
points, is what gives rise to field-aligned currents and corre-
spondingly to magnetic energy in excess of the potential-field
energy.

2. CHARACTERIZING MAGNETIC ENERGIES

We consider four distinct energies that characterize magnetic
fields with a given distribution of magnetic flux at the coronal
base. Lowest is the energy Upot of the unique potential field that
is strictly poloidal and current free in the infinite domain beyond
the coronal base. Throughout this paper we will useUpot as a ref-
erence energy, normalizing all other energies to its value. This is
not a trivial point, because we consider different distributions of
magnetic flux at the coronal base, and these have different values
of Upot for the same radial magnetic field at a given latitude at the
coronal base. Therefore, the decision to normalize using Upot

means letting the actual radial base field vary so that the energy
of potential fields with different base flux distributions remains
the same. A second characteristic energy is Uopen, the energy of
the fully open field with the same base flux distribution. We con-
sider only configurations with symmetry about the equator, and
in such cases the fully open field is current free except for a cur-
rent sheet in the equatorial plane, separating regions of oppo-
sitely directed field. A third characteristic energy is the energyU
of an arbitrary force-free field, generally containing volume cur-
rents and an azimuthal field component and again having the
same base flux distribution. The energy U can be computed as a
volume integral of the magnetic energy density, or as a surface
integral using the scalar virial theorem (see Priest 1984), which
relates surface and volume integral contributions to the magnetic
energy contained in a plasma. For a force-free magnetic field in
axisymmetric spherical geometry, the virial theorem takes the form
(Wolfson & Low 1992)
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Here d� and d� are the volume and surface area elements, respec-
tively, and B is the magnetic field, expressed here in spherical
polar coordinates. The left-hand integral is taken over the infinite
volume above the coronal base, while the surface integral on the
right is over the base alone (more generally, the surface integral
involves all bounding surfaces, but here the outer boundary is at
infinity and makes no contribution). Both integrals give U, the
magnetic energy, in the same arbitrary units. The existence of two
distinct expressions for U provides a check on numerical solu-
tions. In the work described here, the two always agree to better
than 1 part in 103, and inmost cases to better than 1 part in 105. Be-
cause the virial theorem holds for force-free fields only, this pro-
vides an excellent check that the solutions are indeed force free. A
final characteristic energy also follows from the virial theorem. The
virial surface integral shows that the absolute maximum energy,
Umax, is given by taking the surface integralwithB� ¼ B� ¼ 0, and
thus integrating only B2

r
. Such a field is strictly radial at the coronal

base and is generally not force free. However, it represents an ab-
solute upper limit on the possible magnetic energy associated
with a given flux distribution at the coronal base.

3. PARAMETER SPACE

For a given solution, the difference Ufree ¼ U �Upot repre-
sents the free energy that could be released through the dissipation
or other collapse of the force-free currents, and this is the energy
that is, in principle, available to power a mass ejection. However,
the energy Uopen� Upot is required to open the field, and there-
fore the energy available to lift and propel the ejecta is the smaller
quantityUexcess ¼ U � Uopen. Therefore, our goal is to find force-
free magnetic flux rope solutions with the maximum excess energy
Uexcess; that is, solutions whose energy U exceeds the open-field
energyUopen by the maximum possible amount. Again, we express
all energies in units of the appropriate energy Upot.

We work in axisymmetric spherical geometry, and parame-
terize our solutions with the four parameters described below.

First is the parameter�, which characterizes the magnetic flux
distribution at the coronal base, as described in Wolfson (2003).
Our solutions are given in terms of a flux function  r; �ð Þ, which
in our axisymmetric spherical geometry is  ¼ A�r sin �, with A
being the magnetic vector potential. The boundary condition at
the coronal base is specified by giving  1; �ð Þ, which we take to
be

 �ð Þ ¼  0 1� �j j�ð Þ; ð2Þ

where � ¼ cos � and  0 is a parameter that sets the overall scale
of the magnetic field. In this work we choose 0 ¼ 1, which gives
the base magnetic field at the equator the dimensionless value of
1. The important parameter is � , which determines the distribu-
tion of magnetic flux at the coronal base. The case � ¼ 2 makes
the potential field that of a pure dipole, withBr / � at the coronal
base. More generally, the base radial field is

Br r ¼ 1ð Þ ¼ � 0� �j j��1; ð3Þ

where the positive and negative signs indicate the northern and
southern hemispheres, respectively. Thus, higher values of alpha
correspond to fields in which the base flux is distributed more
toward the poles.

The second parameter is a cutoff latitude, designated L�, be-
yond which the field at the coronal base is current free. Thus, any
magnetic shear at the coronal base is confined to latitudes equator-
ward of L�. The choice of L� and the base flux distribution pa-
rameter � together determine a value  � for the field line that

separates potential from nonpotential fields. Decreasing L� de-
creases the magnetic flux emerging from the coronal base in the
nonpotential field, and may or may not change the volume oc-
cupied by a sheared, nonpotential field depending on the shape
of the field line with  ¼  �. Physically, a decrease in L� results
in more overlying potential field, which should enhance any
‘‘hold down’’ effect in which the potential field keeps the sheared
field from erupting outward.
The third and fourth parameters relate to the form of the mag-

netic shear, or more directly, to the azimuthal magnetic field. We
solve for theflux function using thewell-knownGrad-Shafranov
equation, which in axisymmetric spherical coordinates takes the
form (see Wolfson 1995)

@ 2 

@r2
þ 1��2

r2
@ 2 

@�2
¼ �f

df

d 
; ð4Þ

where � ¼ cos �. Here f is an arbitrary function of the flux
function  , related to the azimuthal field component by

B� ¼ f  ð Þ
r sin �

; ð5Þ

and indirectly to the magnetic shear via integration over the field
lines determined from the solution.
The remaining parameters involve the function f, which we

take to have the form

f  ð Þ ¼ �
 � �

 0 � �

� ��

 >  �;

0  �  �;

8><
>: ð6Þ

where 0 and 
� were defined earlier. The third parameter for our

parameter-space exploration is �, which determines the shape of
the function f ; lower values of � spread the shear over the entire
region between the equator and L�, while higher values tend to
concentrate shear more toward the equator. For the case L� ¼ 90�,
allowing the nonpotential field to extend to infinity, our � is re-
lated to the parameter n of Flyer et al. (2004, hereafter FL04) by

n ¼ 2� �1: ð7Þ

The parameter � is a scaling factor that describes the size of
the nonlinear source term in equation (4). It is related, but not
necessarily monotonically, to the overall deviation from poten-
tial field, and thus to the azimuthal field strength and the mag-
netic footpoint shear; � ¼ 0 corresponds to the potential field.
Our � relates to a similarly named parameter used in FL04, and
here designated � FL , by

� FL ¼ �� 2: ð8Þ

However, � is not our fourth parameter. This is because (1) �
itself is not particularly meaningful physically (Low 1977;
Klimchuk & Sturrock 1989), and (2) solution sequences pro-
duced by increasing � monotonically end at critical points be-
yond which � decreases as the solution sequence proceeds along
a new branch. Together, these issues make � less than the ideal
parameter for characterizing solutions to equation (4). Instead,
FL04 have suggested characterizing similar force-free solutions
by the total azimuthal magnetic flux F�, obtained by integrating
B� ¼ f  ð Þ/r sin � over the r-� plane. This characterization is
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appropriate because the azimuthal flux increases monotonically
along a solution sequence.

Thus, we have four distinct parameters that characterize a
given solution. The first, � , determines the distribution of mag-
netic flux at the coronal base; higher � values correspond to
greater poleward flux concentration. The second, L�, is the cutoff
latitude, above which field lines at the coronal base are not
sheared, and the field is therefore potential. The third parameter
is �, which determines the shape of the generating function; lower
� values spread shear and currents more evenly across the region
of nonpotential field. The fourth parameter, F�, is the azimuthal
magnetic flux.

Strictly speaking, our results are valid only in the context of
the generating function specified in equation (6), so it might be
possible to find higher maximum energies with other forms of
this function. However, our use of four free parameters ensures
that equation (6) actually describes a broad range of possible ge-
nerating functions. The shape parameter �, in particular, lets the
function f  ð Þ vary from extremes of upward concavity to down-
ward concavity, and thus it represents the general features of all
inflection-free monotonic functions. Therefore, our results are
likely to give a close approximation to the maximum energies
attainable in simple arcade-like magnetic fields.

4. COMPUTATIONAL APPROACH

Specification of these four parameters determines a solution
to the nonlinear partial differential equation (4), should such a
solution exist. But that equation contains � rather then the azi-
muthal flux F�, and because F� is an integral involving f  ð Þ,
with  the solution, it might seem that F� cannot be prescribed a
priori. We get around this problem by adding another degree of
freedom to the system that results from discretizing equation (4),
in the form of a weak constraint that reads

� Ft � F�
� �

¼ 0: ð9Þ

This effectively makes � a Lagrange multiplier in a system
where we specify a ‘‘target’’ value for the azimuthal flux, des-
ignated Ft. The additional condition (9) then forces a solution
with whatever value of �will giveF� the valueFt. Therefore, we
can specify all four parameters � , L�, �, and F� (equivalently,
Ft) with the hope of finding a solution.

We solve the system consisting of the discretized partial differ-
ential equation (4) and the constraint (9) using the finite-element
package COMSOL MULTIPHYSICS accessed with MATLAB
code; the actual solution is donewithCOMSOL’s nonlinear solver
FEMNLIN. Before coding, we recast equation (4) in terms of the
independent variable w ¼ 1/r. That makes the infinite domain
from r ¼ 1 (solar surface) to r ¼ 1 a rectangle bounded by w ¼
1 (solar surface), w ¼ 0 (r ¼ 1), � ¼ 0 (the equatorial plane),
and � ¼ 1 (the polar axis). Since our boundary condition at the
coronal base is symmetric about the equator, we need to solve in
only one solar hemisphere. A uniform mesh in our rectangular
w-� domain would be nonuniform in r, giving the desired clus-
tering of mesh points closer to the solar surface, with larger mesh
elements farther out. Thus, we would have an appropriate mesh
for the entire infinite domain, without having to introduce an ar-
tificial cutoff associated with an outer boundary at finite radius.
However, we do not use a completely uniform mesh, but rather
introduce additional mesh elements in the general region where
we expect nonpotential fields. Although the gradients in the so-
lution are not unusual in the presence of electric currents, there
are rapid spatial variations in the nonlinear term on the right-hand

side of equation (4) at high values of � or F�, and a fine mesh
ensures that these variations are resolved. Figure 1 shows a typical
mesh, although with fewer elements than we use in calculations.

5. ROLE OF THE CONFINING LATITUDE

One main goal of this work is to find out whether increased
coronal magnetic energy storage results from confining the region
containing electric currents with an overlying potential magnetic
field. That is the purpose of our parameter L�, which describes the
latitudinal extent of nonpotential fields at the coronal base. In this
section we explore the role of latitudinal confinement for the
case� ¼ 2, representing the boundary conditions of a pure dipole.
Although we will soon show that this case does not yield the
greatest magnetic energy, we explore it in detail because it com-
pares readily with FL04’s previous work on this problem. FL04
consider the cases n ¼ 5, 7, and 9, corresponding to our � taking
the values 3, 4, and 5 with no latitudinal cutoff (e.g., L� ¼ 90�).
They find that the maximum azimuthal flux in all three cases is
about 1.7, and that the maximum possible energy increases with
n. Furthermore, their n ¼ 7 and 9 solutions exhibit magnetic
flux ropes. For comparison with FL04, we have explored the
case � ¼ 3, corresponding to their n ¼ 5. We follow solution se-
quences by increasing the parameterF� as described above. Those
sequences can be represented by curves in the energy versus �
plane. With a finite number of solutions calculated in each se-
quence, those curves become sets of discrete points. In advanc-
ing the value of F�, we use an adaptive step size adjustment that
keeps the change in angle of the segment joining one pair of
solution points to the segment joining the next pair in the range
of 2.5�Y5�. As a result, we take smaller steps where the solution-
sequence curves bend sharply. The resulting curves are similar to
those on the left-hand side of Figure 2. Despite the very different
computational approaches, our results for L� ¼ 90

�
(the uncon-

fined case) are essentially identical to those of FL04, although
we find a slight disagreement in the final few points along the

Fig. 1.—Typical finite-element mesh, but with fewer elements than used in
calculations. The rectangular region at top left contains most of the nonpotential
field, and here the mesh has higher resolution. The w-� coordinate system maps
the infinite computational domain into a square.
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Fig. 2.—Energy and flux vs. the parameter � FL for L� ¼ 90�, 60�, and 30�.



solution curve, well past the maximum energy and near what
appears to be a limit point. These discrepancies probably result
from the different ways in which we handle the outer boundary.
More interesting is what happens as we lower the confining
latitude L�. Figure 2 shows curves of energy and flux versus the
parameter � FL for L� ¼ 90�, 60�, and 30�. As the confining lati-
tude decreases, so does the maximum azimuthal flux—not sur-
prising, given that the nonpotential fields that produce this flux are
now spatially limited. But even as the maximum azimuthal flux
decreases, the stored magnetic energy increases. Figure 3 shows
this effect for the entire latitude range. In this case the energy ex-
hibits a slight maximum at L� around 30� before leveling off at
lower L� values.With higher values of � , this maximum does not
appear and the energy levels off at its maximum value as L� tends
toward zero (Larson 2006). In addition to this increase in mag-
netic energy, the confined fields develop magnetic flux ropes
emerging from the coronal base—ropes that are not present for
n ¼ 5 in FL04’s work, when the confining latitude falls below
about 64�. The discontinuity in the flux curve of Figure 3 appears
to be a real feature and is associated with the appearance of these
flux ropes.

Figure 3 also shows the well-known result for the energyUopen

of the fully open field with the same dipole boundary conditions,
namely 1.662 times the potential-field energy. For cutoff lat-
itudes below about 55

�
, the total magnetic energy in these fields

exceeds Uopen—showing that the higher energy flux rope fields
exceed the Aly-Sturrock limit on force-free fields with simpler
topology. Here the greatest excess energy, while not large, is a sig-
nificant 14% of the potential-field energy.

6. MAXIMIZING THE MAGNETIC ENERGY

Our primary goal is to maximize the energy of force-free
fields relative to the energy of the potential field with the same
boundary conditions at the coronal base. We could start with a
potential-field solution and vary parameters to find higher energy
solutions. However, having first done some manual exploration
of parameter space, we start from a solution that already has
significant energy; here we use the solution with � ¼ 2 (dipole
boundary condition), L� ¼ 20�, � ¼ 2, and F�¼ 0:4. This solu-
tion has 1.81 times the potential-field energy and already exceeds

the open-field energy (1.662 times the potential-field energy) by
almost 15% of the potential-field energy.

We then use a nonlinear maximizing routine (MATLAB’s
FMINSEARCH) to find the parameter set that gives the greatest
excess energy, normalized as usual to the potential-field energy
for the particular value of the now-varying flux distribution pa-
rameter �. The maximizing routine takes only small steps in
parameter space, so its starting point is always a nearby solution,
and therefore convergence is rarely a problem.When it is a prob-
lem, we avoid that particular direction in parameter space, which
means that our maximum-energy solution is only guaranteed to
be the maximum among converged solutions that our procedure
can reach. We also reject solutions in which the volume and
surface integrals for the energy differ by more than 1 part in 103,
on the assumption that the solution is not sufficiently force free.
In practice nearly all our solutions show agreement to about 1
part in 105. Finally, we avoid directions in parameter space in
which the excess energy drops by more than 10% in one step, on
the grounds that the optimizing routine may have jumped to a
new branch of the solution sequence.

7. MAXIMUM-ENERGY SOLUTIONS

Figure 4 shows the results of our maximum-finding proce-
dure, along with the evolution of the cutoff latitude parameter L�.
After hundreds of iterations, the procedure converges on a max-
imum with parameter values � ¼ 2:54, � ¼ 0:755, L� ¼ 3:34,
and F� ¼ 0:579; Figure 5 shows the actual maximum-energy
solution. At this solution the excess energy over that of the open
field is just above 18% of the potential-field energy for this value
of � . Figure 6 shows that this energy maximum occurs in a
broad, nearly flat region in parameter space where the maximum
energies exceed 17% of the potential-field energy for a wide range
of parameters. Thus, our maximum-energy solution is typical of
neighboring solutions. As Figure 6 implies, solutions in this high-
excess-energy region show both low confining latitudes and low
values of �. These trends make sense: low values of L� mean
more overlying potential field to hold down the sheared field, and
low values of � spread currentmore broadly over the nonpotential
region, resulting in higher energy associated with the azimuthal
field component. It is also interesting to note that the maximum
energies are reached for values of the flux distribution parameter
� somewhat above the dipole value � ¼ 2. Since larger values
of � have more flux emerging at high latitudes, this result is

Fig. 3.—Maximum azimuthal flux and maximum magnetic energy as func-
tions of the confining latitude L�, for solutions with� ¼ 2,� ¼ 3.Maximumflux
and energy do not necessarily occur at the same solution, but for lower latitudes
they do. The dashed line represents the energy Uopen of the fully open field with
dipole boundary conditions. Discontinuity in the flux curve marks the emergence
of flux ropes from the coronal base. The dimensionless units are described in the
text.

Fig. 4.—Results from the procedure that seeks themaximum-energy solution.
The excess energy over that of the fully open field increases to about 18% of the
potential-field energy, while the cutoff latitude drops to small values.
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consistent with our finding that stronger overlying potential fields
help hold down the nonpotential field, allowing larger energy
buildup. We have performed additional manual and automated
searches of our parameter space, including using models with
higher mesh resolution, but we find no solutions with excess en-
ergies significantly different from those shown in Figures 4Y6.
Finer meshes do result in converged solutions for lower latitudes,
but as a look at the low-latitude region of Figure 3 suggests, these
are unlikely to produce significant energy gains.

8. STABILITY

Our high-energy flux rope solutions are clearly at most meta-
stable, in the sense that there exist lower energy states to which
the magnetic field might transition. The potential field is obviously
one of these, but it is not relevant to the mass ejection phenomenon
because CMEs leave the affected field largely open to interplan-

etary space. However, the open-field state is an obvious lower
energy state that could represent the final state of an energy-
decreasing field reconfiguration associated with a mass ejection.
Again, our excess energies measure the difference between flux
rope solutions and the open-field state. Whether there is an ob-
vious mechanism for triggering such a reconfiguration depends
on the stability of the flux rope solutions.
Our numerical equilibrium models do not readily admit sta-

bility analysis. Instead, we have used these models as inputs to
the SAIC MHD code. This code solves the full resistive and vis-
cousMHD equations on a structured grid in spherical coordinates
(Mikić et al. 1999). The mesh used in the simulations was de-
signed to have the same resolution as that of our numerical equi-
librium models.
The SAIC code uses staggered grids, so we first interpolate

our solutions as appropriate to the staggered grid. We also convert

Fig. 5aFig. 5b

Fig. 5.—(a) Maximum-energy solution plotted on thew-� coordinate system shown in Fig. 1. Shaded region is where the field is nonpotential. Lines are contours of the
solution  , and represent the projection of the magnetic field lines onto the poloidal plane. Coronal base is at the top; see Fig. 1. (b) The same solution, now plotted in the
usual r-� spherical coordinates over the range r ¼ 1 to 3, and mirrored into the southern hemisphere.

Fig. 5a

Fig. 5b
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the flux function that is our numerical solution into the azimuthal
component A� of the vector potential, as required in the SAIC
code. Finally, we numerically integrate B� ¼ f  ð Þ/r sin � in the
radial direction to get the component A� for input to the code.

We have used our maximum-energy solutions as inputs to the
SAIC code, as well as solutions with energies on either side of the
open-field energy. In no case do we find any evidence of insta-
bility, at least against two-dimensional perturbations.

9. CONCLUSIONS

This work shows that detached magnetic flux ropes in the solar
corona are capable of storing significantly more energy than is in

the corresponding open-field state. ‘‘Significant’’ here is about
18%; substantially more than the few percent found in earlier stud-
ies involving magnetic flux ropes, although somewhat less than
in the more complex field geometry of Choe & Cheng (2002).
Furthermore, our work suggests that a physical explanation for
this energy storage is the holding down of highly sheared mag-
netic fields by overlying potential fields. Varying our confining
latitude parameter L� and our flux distribution parameter �
shows that the highest energy solutions arise with low confining
latitudes, where only a small fraction of the flux is sheared—that
is, nonpotential—at the coronal base. The result is nevertheless a
large nonpotential region within the coronal volume, surround-
ing a flux rope. Overlying this is a potential field, which if its
high-latitude flux is increased, enhances the buildup of energy in
the flux rope and surrounding field. So both the confinement of
sheared flux at the coronal base to equatorial latitudes and the
redistribution of mostly potential flux toward higher latitudes
contribute to enhanced energy storage. This suggests that pre-
cursor regions for CMEs might best be found where highly
nonpotential magnetic fields are confined to limited regions by
strong overlying potential fields. However, our work has not found
any two-dimensional instability whereby such confined, high-
energy fields would spontaneously transition to the lower energy
open-field state.
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