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bstract

of magnetic-field evol

The energy that powers eruptive solar events such as coronal mass ejections is likely stored in non-potential coronal magnetic fields, where it builds
up gradually but is then released quickly in the eruptive event itself. Here we explore the buildup of magnetic energy in a quadrupolar corona, a
configuration that may characterize the corona at certain times between solar minimum and maximum, and more generally that permits theoretical
i ion on length scales smaller than those of the dipole and related bipolar fields. We consider shearing the
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of one lobe or both lobes of the quadrupolar field, introd

that of the open field; with the quadrupole we achieve nearly twice that.

with the changing magnetic-field configuration and especially with the presence of an azimuthal field component. Magnetic energy builds readily
to levels that modestly exceed those possible with a pure dipole field. We compare the maximum possible stored energy with that of a quadrupolar
field with open field lines (a non-trivial calculation, in contrast to the dipole case).

currents and magnetic energy associated

For the pure dipole we earlier found energies some 10% above

is work expands our earlier exploration of the buildup of magnetic energy in
dipolar and related bipolar coronal magnetic field configurations (Wolfson et al.
2007; Wolfson & Pathak 2007). There we found force-free fields containing
magnetic flux ropes, capable of storing sufficient energy to propel CMEs even
after accounting for the energy needed to open the field.

Here we turn to quadrupolar fields, which provide a higher level of magnetic
complexity and smaller scale lengths, and which approximate the coronal field
during certain times in the solar cycle (McIntosh 1993). Again we use the force-
free approximation, appropriate in most of the lower corona. We bulld energy
in our model corona by adding an azil field

physically to shearing the magnetic footpoints at the coronal bdse The
quadrupolar field has two distinct magnetic lobes, one in each hemisphere, and
[we can shear the field in one hemisphere or both. The former case permits
exploration of the interaction between a sheared field and an adjacent unsheared
flux system—something that commonly happens in the evolution of the coronal
field toward and through the CME process.

Normally, the energy in a sheared force-free magnetic field cannot exceed that
of a fully open field with the same boundary conditions (Aly 1984, 1991;
Sturrock 1991). This is problematic for CME energy storage because the CME
requires not only that the field open but also that there be sufficient excess
energy to lift and accelerate the ejected material. Our previous work

Open-field Energy

ether a model corona contains enough energy to power a CME depends on
the total magnetic energy compared with that needed to open the field. Energy
in excess of the field-opening energy is necessary to lift the ejecta against solar
gravity and to propel it to CME speeds of typically 400 km's~!. So for any
coronal model, we need to know the energy of the open magnetic field with the
same boundary conditions at the coronal base.

(Opening the coronal field entails the formation of one or more current sheets.
For bipolar fields symmetric about the equator, the result is a single current
sheet in the equatorial plane. With the current-sheet configuration thus known,
it is straightforward to calculate the open-field energy (see Wolfson 2003). But
fwith quadrupolar fields the current-sheet configuration is not obvious a priori,
and must be calculated.

Here we follow a suggestion of Schatten (2008), namely to solve a related
[problem in which the radial field at the coronal base is reversed on one side of a
bipolar region that would normally open to include a current sheet. The
resulting field is strictly potential everywhere, with no current sheet, but its field
magnitude is everywhere the same as the corresponding open field containing a
current sheet. Therefore its magnetic energy is also the same. This new field is
ical because a nonzero magnetic flux emerges from the model Sun, but it
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Fig. 1 Computational domain, showing a typical finite-
element mesh after the first pass of adaptive refinement,
for the asymmetrically sheared quadrupole.

this issue through the formation of detached magnetic flux ropes, to which the
Aly-Sturrock limit does not apply. In the present work the limit also does not
apply to quadrupolar fields sheared ically in a single hemi

[where only a partial opening of the field is necessary.

Computational Technique

'We work in axisymmetric spherical geometry. With one

remains a useful computational device. Figure 2 shows a modified quadrupolar
[boundary condition that generates this field.

[We solve for the flux function y of Equation (1) with =0, here using the
Legendre solution described in Wolfson & Gould (1985):

P ()-P (1)
w= 2” 2z+1 @

Requiring that the field line from one pole extend to infinity sets the constant c,.
| An orthogonal function analysis then provides a recursion relation for ¢, in
terms of ¢, ,. Then c, is set by requiring that the boundary condition be satisfied|
at the point £#=0. That procedure requires iteration as the whole set of ¢;s for
odd 0 is involved. With the coefficients determined, we differentiate the series
solution (2) to get the magnetic field, and then integrate B2 to find the magnetic
energy. The result, for a series to =12, is an open-field energy 1.5 times that of
the closed potential field for the case of a quadrupole with one lobe open. Fig. 3
shows the resultmg open field, including the configuration of the current sheet in|

i=cos6
Fig. 2 Boundary condition on y for a pure
quadrupole (blue) and as modified for a potential
field open in the northern hemisphere (red).

[Ampére’s law (J x B =0)and the force-free condition (J e V x B)combine to
give a Grad-Shafranov equation, which we write symbolically in the form

Lw)=rs(v )df 0

Here L is a linear partial differential operator and y is the dependent variable,
[which in axisymmetric spherical geometry is given by y=4 gsinf with 4, the
lazimuthal component of the magnetic vector potential and 7, 6 the spherical
[polar coordinates. The function fis an arbitrary function of y, related directly to
the azimuthal magnetic field component and indirectly to the magnetic footpoint
shear. We fix the form of fand vary the parameter 7 to change the function’s
overall amplitude.

Our goal is to find solutions with large magnetic energy—in particular, energy
in excess of the Aly-Sturrock open-field limit. We specify a sequence of
solutions in terms of the azimuthal magnetic flux as described in Wolfson et al.
(2007). This approach helps us follow the sequence through critical points at
[ which 7 switches from increasing to decreasing or vice versa.
The numerical solution is done on a domain with di

| i=cos@ and w=1/r, using the finite-element package Comsol Multiphysics with
ladaptive meshing (Fig. 1). We then define extrusion variables that allow us to
[plot the results in spherical geometry.
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Fig. 3 Solution for a quadrupole with one lobe
open, shown to 5 solar radii. Color codes the value
of the flux function y; from —1 (blue) to 2 (red);
contours of y trace the field lines. y=1 contour
(black) marks where a current sheet would form in
the corresponding non-potential field.

the cor potential field. For a quadrupole with both lobes opened,
the open-field energy is 2.39 times the potential-field energy.

[both hemispheres and shear applied asymmetrically, in only the northern
lhemisphere. Fig. 4 shows an asymmetric solution in the computational domain,
while Fig. 5 shows the maximum-energy solutions for both cases plotted in
spherical geometry. Note that flux ropes form in each case. Fig. 6 shows the
solution d as the in Equation (1) varies; we are
able to converge solutions until just past the maximum energy. For the
lasymmetric case that maximum is 1.69 times the potential-field energy; for the
symmetric case the corresponding ratio is 2.71. Although two-hemisphere
shearing yields more energy, it suggests the unrealistic situation of two identical
(CME i . In any event, it is the excess over
the open-field energy !haz xs available to dnve a CME. Figure 7 compares these
energies for the two cases, as well as for a the dipole case treated in our earlier
work; the excess energies plotted are 19%, 32%, and 10% of the potential field-
energy for, respectively, the asymmetrically sheared quadrupole, the
symmetrically sheared quadrupole, and the dipole. Since the unrealistic case of
the symmetrically sheared quadrupole should yield two distinct CMESs, the
lasymmetrically sheared quadrupole actually has the most excess energy on a
per-CME basis—and nearly twice that of the dipole. Another significant
[comparison is with the recent work of Zhang & Flyer (2008), who model
multipolar force-free fields but without the overlying potential field that
characterizes our work and that we believe is responsible for “holding down™
the sheared field and thus allowing greater energy buildup. Indeed, our model
achieves twice the free energy of Zhang & Flyer’s model.

[We conclude that the quadrupole, with its smaller spatial scale, yields
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iderably more CME-p ing excess energy than the larger-scale dipole,
land that the overlying potential field continues to playsa role in this energy
[buildup. This result is consistent with our earlier findings about the role of flux
distribution in the energy buildup in purely bipolar fields (Wolfson 2003). At
this point we have not applied the energy-maximizing procedure described in
[Wolfson et al. (2007), so we i that optimized quads fields might
store even greater energies than those found here.

Fig. 4 Maximum-energy solution for one sheared lobe, in the
computational domain that extends from the solar surface (top) to
infinity (bottom); see Fig. 1. Contours are projections of the
magnetic field lines in the -6 plane.

Fig. 5 Projections of magnetic field lines in the r-6 plane for
asymmetric (left; one lobe sheared) and symmetric (right) shear,
for the maximum-energy solutions. Colors code values of the flux
function y. Note the two flux ropes at right and one at left.
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Fig. 6 Energy buildup along solution sequences with
symmetric and asymmetric shear. Energy is in units of the
potential-field energy.
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Fig. 7 Characteristic energies for three field configurations.
Excess energy is available to lift and accelerate CMEs.
Potential-field energies are normalized to 1.




