COVID-19 Updates: Fall Semester

Jeff Byers

Philip Battell Stewart and Sarah Frances Cowles Stewart Professor of Chemistry

 work(802) 443-5207
 fax (802) 443-5207
 On leave
 McCardell Bicen Hall 551

Jeff Byers is a synthetic organic chemist, having received a B.S. degree from the University of Rochester in 1979 and a Ph.D. from Dartmouth College in 1984, where he worked in the group of Thomas A. Spencer . He held a postdoctoral fellowship in the group of Gary Keck at the University of Utah before joining the Middlebury faculty in 1986. Jeff is currently on leave.

His teaching interests lie predominately in General Chemistry (CHEM 0103, CHEM 0104) and Introductory and Advanced Organic Chemistry (CHEM 0241, CHEM 0242 and CHEM 0442). He has also taught Freshman Seminars entitled "Fraud, Foolishness, and Serendipity", and "Smart Energy Choices" in recent years.  He has also been experimenting in the use of social networking sites such as Facebook as tools for collaborative learning in chemistry courses.

Current Research Interests lie in the application of transition metal templated radical intermediates to organic synthesis.

Hobbies and Interests included hiking (especially peak-bagging), skiing (nordic and alpine), running and piano.

He authors a blog on trailrunning in Addison County called "The Middlebury Trailrunner"



Course List: 

Courses offered in the past four years.
indicates offered in the current term
indicates offered in the upcoming term[s]

CHEM 0103 - General Chemistry I      

General Chemistry I
Major topics will include atomic theory and atomic structure; chemical bonding; stoichiometry; introduction to chemical thermodynamics. States of matter; solutions and nuclear chemistry. Laboratory work deals with testing of theories by various quantitative methods. Students with strong secondary school preparation are encouraged to consult the department chair for permission to elect CHEM 0104 or CHEM 0107 in place of this course. CHEM 0103 is also an appropriate course for a student with little or no prior preparation in chemistry who would like to learn about basic chemical principles while fulfilling the SCI or DED distribution requirement. 3 hrs. lect., 3 hrs. lab, 1 hr. disc. DED SCI

Fall 2017, Fall 2018, Spring 2019

More Information »

CHEM 0203 - Organic I: Struct & Reactivity      

Organic Chemistry I: Structure and Reactivity
In Fall 2020, this course will be taught remotely using “flipped class” pedagogy. Students will be expected to watch videos prior to class, and classroom time will be dedicated to small group problem solving with faculty guidance. The course will provide students with an introduction to the structure and reactivity of organic molecules sufficient to continue directly to study of biochemistry (CHEM 0322). Topics covered will include models of chemical bonding, acid-base relationships, three-dimensional molecular structure (conformations and stereochemistry), reaction mechanisms and energy diagrams, substitution and elimination reactions, carbonyl reactions (additions, reductions, interconversions, and alpha-reactivity), and the fundamentals of biological molecules (carbohydrates, DNA, and RNA). Remote laboratory experiments will relate to purification techniques (recrystallization, distillation, extraction, and chromatography) as well as microscale organic reactions that complement the lecture portion of the course. (CHEM 0104 or CHEM 0107) 3 hrs. lect., 3 hrs. lab SCI

Fall 2016, Fall 2020

More Information »

CHEM 0204 - Organic II: Synthesis & Spect      

Organic Chemistry II: Synthesis and Spectroscopy
In this course we will explore the ways that organic molecules are made and their structures identified. The study of organic reactions will continue from CHEM 0203 with radical reactions, alkene and alkyne additions, aromatic reactions, oxidations and reductions, and additional carbonyl reactions. Emphasis in this course will be placed on using reactions in sequences to synthesize larger and more complex molecules. The theory and practice of mass spectrometry and UV-Vis, IR, and NMR spectroscopy will be studied as a means to elucidate the exact structures of organic molecules. Laboratory experiments will focus on synthetic techniques that complement the lecture portion of the course and the identification of complex unknowns via GC-MS, IR, and NMR. (CHEM 0203) 3 hrs. lect., 3 hrs. lab, 1 hr. prelab.

Fall 2016, Spring 2017, Fall 2017

More Information »

CHEM 0400 - Seminar In Chemical Research      

Seminar in Chemical Research
This seminar provides students with experiences to support the preparation of a senior thesis. As the course involves participation in a mentored laboratory project and the intent to complete a senior thesis, students must make arrangements to work with a faculty advisor prior to gaining approval for course registration. The classroom portion of this seminar focuses on reading the scientific literature, giving effective oral presentations, and writing the thesis introduction. Particular emphasis will be given to computer and technology issues related to oral and written presentations. Participation will normally be followed by registration for CHEM 0500 or CHEM 0700 (winter term and spring). (Senior standing; Approval only) 2 hrs. sem., 12 hrs. lab.

Fall 2018

More Information »

CHEM 0442 - Advanced Organic Chemistry      

Advanced Organic Chemistry
This course covers advanced topics in organic chemistry, with the goal of bringing students to the point where they have the knowledge necessary to become lifelong learners of organic chemistry through primary literature, rather than reliance on textbooks. With this goal in mind, the course will cover qualitative molecular orbital theory and reactive intermediates beyond the anion and cation chemistry which form the main body of the introductory organic chemistry sequence. More advanced techniques in NMR spectroscopy, stereochemistry, and conformational analysis will also be covered, and the course will culminate in literature examples of total synthesis of natural products, and a final project involving authoring a Wikipedia page on a topic of interest relating to organic chemistry. (CHEM 0204 or CHEM 0242)

Spring 2017, Spring 2019

More Information »

CHEM 0500 - Independent Study      

Independent Study Project
Individual study for qualified students. (Approval required)

Fall 2016, Winter 2017, Spring 2017, Fall 2017, Winter 2018, Spring 2018, Fall 2018, Winter 2019, Spring 2019, Fall 2019, Winter 2020, Spring 2020, Fall 2020, Winter 2021, Spring 2021

More Information »

CHEM 0700 - Senior Research      

Senior Research
In this course students complete individual projects involving laboratory research on a topic chosen by the student and a faculty advisor. Prior to registering for CHEM 0700, a student must have discussed and agreed upon a project topic with a faculty member in the Chemistry and Biochemistry Department. Attendance at all Chemistry and Biochemistry Department seminars is expected. (Approval required; open only to seniors)

Fall 2016, Winter 2017, Spring 2017, Fall 2017, Winter 2018, Spring 2018, Fall 2018, Winter 2019, Spring 2019, Fall 2019, Winter 2020, Spring 2020, Fall 2020, Winter 2021, Spring 2021

More Information »

CHEM 0701 - Senior Thesis      

Senior Thesis
Students who have initiated research projects in CHEM 0400 and who plan to complete a senior thesis should register for CHEM 0701. Students are required to write a thesis, give a public presentation, and defend their thesis before a committee of at least three faculty members. The final grade will be determined by the department. Attendance at all Chemistry and Biochemistry Department seminars is expected. (CHEM 0400; approval required)

Fall 2016, Winter 2017, Spring 2017, Fall 2017, Winter 2018, Spring 2018, Fall 2018, Winter 2019, Spring 2019, Fall 2019, Winter 2020, Spring 2020, Fall 2020, Winter 2021, Spring 2021

More Information »

Recent Publications

“Social Networking Sites for Online Collaboration in Chemistry Courses:  A Facebook Experiment”  Byers, J. H.  The Chemical Educator, 2011 (online journal).

“Radical Aromatic Substitution with Benzene Chromiumtricarbonyl” Byers, J. H.*; Neale, N. R.*; Alexander, J. B.* Gangemi, S. P.* Tetrahedron Lett. 2007, 48, 7903-7905.

“The Radical Addition of Dimethyl 2-Ethynylcyclopropane-1,1-dicarboxylate to Electron-Rich Olefins” Byers, J. H.; Goff, P. H.*; Janson, N. J.*; Mazzotta, M. G.*; Swigor, J. E. Synthetic Commun. 2007, 37, 1865-1871.

“Radical Additions to (n6-Styrene) Chromium Tricarbonyl” Byers, J. H.; Janson, N. J.* Organic Lett. 2006, 8, 3453.

“Thiocarbonyldiimidazole” Byers, J.H. Encyclopedia of Reagents for Organic Synthesis, L. A. Paquette, Ed. Wiley, 2006.

“Radical Reactions Mediated by Cyclobutadieneiron Tricarbonyl” Byers, J. H.; Sontum, S. F.; Dimitrova, T. S.*; Huque, S.*; Zhang, Y.*; Zegarelli, B. M.*; Jasinski, J. P; Butcher, R. P. Organometallics 2006, 25, 3787.

"Tandem Radical-Electrophilic Annulations to Pyrrole" Byers, J. H.; DeWitt, A.*; Nasveschuk, C. G.*; Swigor, J. E. Tetrahedron Lett., 2004, 45, 6587-6590.

"A One-step Radical Synthesis of Pyrrol-2-Acetic Acids" Byers, J. H.; Duff, M. P.*; Woo, G. W.*, Tetrahedron Lett., 2003, 44, 6853-6855 .

"Syntheses of 3-Acylindoles via the Alkylation of the Dianion of 3-Acetylindole" Byers, J. H.; Zhang, Y.* Heterocycles, 2002, 57, 1293-1297.

Recent Major Grants

$225,000 from the NSF-RUI for "Radical Reactions of Arene-Metal Complexes" 2009

$200,000 from NSF-MRI for “Acquisition of an LC/MS System” 2005

$24,900 from Vermont-EPSCOR for “Purchase of a solvent purification system” 1/05

$5000 from Pfizer Pharmaceuticals Central Research in support of an undergraduate summer research assistant, 4/04

$300,000 from the NSF-RUI for “Transition Metal Templated Radical Reactions” 7/03-6/06.

$8900 from Vermont-EPSCOR for “Radical Chemistry of Cyclobutadiene Iron Tricarbonyl” 6/03-8/03.

Department of Chemistry & Biochemistry

McCardell Bicentennial Hall
276 Bicentennial Way
Middlebury College
Middlebury, VT 05753