Sections

« Summer Study 2016 Fall 2016 Winter 2017 »

CSCI0101A-F16

CRN: 90076

Introduction to Computing
Introduction to Computing
In this course we will provide a broad introductory overview of the discipline of computer science, with no prerequisites or assumed prior knowledge of computers or programming. A significant component of the course is an introduction to algorithmic concepts and to programming using Python; programming assignments will explore algorithmic strategies such as selection, iteration, divide-and-conquer, and recursion, as well as introducing the Python programming language. Additional topics will include: the structure and organization of computers, the Internet and World Wide Web, abstraction as a means of managing complexity, social and ethical computing issues, and the question "What is computation?" (Seniors by waiver) 3 hr. lect./lab

CSCI0101X-F16

CRN: 91628

Introduction to Computing
Introduction to Computing Lab
Introduction to Computing
In this course we will provide a broad introductory overview of the discipline of computer science, with no prerequisites or assumed prior knowledge of computers or programming. A significant component of the course is an introduction to algorithmic concepts and to programming using Python; programming assignments will explore algorithmic strategies such as selection, iteration, divide-and-conquer, and recursion, as well as introducing the Python programming language. Additional topics will include: the structure and organization of computers, the Internet and World Wide Web, abstraction as a means of managing complexity, social and ethical computing issues, and the question "What is computation?" (Seniors by waiver) 3 hr. lect./lab

CSCI0101Y-F16

CRN: 91629

Introduction to Computing
Introduction to Computing Lab
Introduction to Computing
In this course we will provide a broad introductory overview of the discipline of computer science, with no prerequisites or assumed prior knowledge of computers or programming. A significant component of the course is an introduction to algorithmic concepts and to programming using Python; programming assignments will explore algorithmic strategies such as selection, iteration, divide-and-conquer, and recursion, as well as introducing the Python programming language. Additional topics will include: the structure and organization of computers, the Internet and World Wide Web, abstraction as a means of managing complexity, social and ethical computing issues, and the question "What is computation?" (Seniors by waiver) 3 hr. lect./lab

CSCI0101Z-F16

CRN: 91630

Introduction to Computing
Introduction to Computing Lab
Introduction to Computing
In this course we will provide a broad introductory overview of the discipline of computer science, with no prerequisites or assumed prior knowledge of computers or programming. A significant component of the course is an introduction to algorithmic concepts and to programming using Python; programming assignments will explore algorithmic strategies such as selection, iteration, divide-and-conquer, and recursion, as well as introducing the Python programming language. Additional topics will include: the structure and organization of computers, the Internet and World Wide Web, abstraction as a means of managing complexity, social and ethical computing issues, and the question "What is computation?" (Seniors by waiver) 3 hr. lect./lab

CSCI0150A-F16

CRN: 91183

Computing for the Sciences
Computing for the Sciences
In this course we will provide an introduction to the field of computer science geared towards students interested in mathematics and the natural sciences. We will study problem-solving approaches and computational techniques utilized in a variety of domains including biology, chemistry, physics, and engineering. Students will learn how to program in Python and other languages, how to extract information from large data sets, and how to utilize a variety of tools employed in scientific computation. The course has no prerequisites and assumes no prior experience with programming or computer science. 3 hrs. lect./lab

CSCI0150B-F16

CRN: 91633

Computing for the Sciences
Computing for the Sciences
In this course we will provide an introduction to the field of computer science geared towards students interested in mathematics and the natural sciences. We will study problem-solving approaches and computational techniques utilized in a variety of domains including biology, chemistry, physics, and engineering. Students will learn how to program in Python and other languages, how to extract information from large data sets, and how to utilize a variety of tools employed in scientific computation. The course has no prerequisites and assumes no prior experience with programming or computer science. 3 hrs. lect./lab

CSCI0200A-F16

CRN: 91631

Math Foundations of Computing
Mathematical Foundations of Computing
In this course we will provide an introduction to the mathematical foundations of computer science, with an emphasis on formal reasoning. Topics will include propositional and predicate logic, sets, functions, and relations; basic number theory; mathematical induction and other proof methods; combinatorics, probability, and recurrence relations; graph theory; and models of computation. (One CSCI course at the 0100-level previously or concurrently) 3 hrs. lect./lab

CSCI0201A-F16

CRN: 90118

Data Structures
Data Structures
In this course we will study the ideas and structures helpful in designing algorithms and writing programs for solving large, complex problems. The Java programming language and object-oriented paradigm are introduced in the context of important abstract data types (ADTs) such as stacks, queues, trees, and graphs. We will study efficient implementations of these ADTs, and learn classic algorithms to manipulate these structures for tasks such as sorting and searching. Prior programming experience is expected, but prior familiarity with the Java programming language is not assumed. (One CSCI course at the 0100-level) 3 hrs. lect./lab

CSCI0201B-F16

CRN: 91632

Data Structures
Data Structures
In this course we will study the ideas and structures helpful in designing algorithms and writing programs for solving large, complex problems. The Java programming language and object-oriented paradigm are introduced in the context of important abstract data types (ADTs) such as stacks, queues, trees, and graphs. We will study efficient implementations of these ADTs, and learn classic algorithms to manipulate these structures for tasks such as sorting and searching. Prior programming experience is expected, but prior familiarity with the Java programming language is not assumed. (One CSCI course at the 0100-level) 3 hrs. lect./lab

CSCI0201Y-F16

CRN: 91712

Data Structures
Data Structures Lab
Data Structures
In this course we will study the ideas and structures helpful in designing algorithms and writing programs for solving large, complex problems. The Java programming language and object-oriented paradigm are introduced in the context of important abstract data types (ADTs) such as stacks, queues, trees, and graphs. We will study efficient implementations of these ADTs, and learn classic algorithms to manipulate these structures for tasks such as sorting and searching. Prior programming experience is expected, but prior familiarity with the Java programming language is not assumed. (One CSCI course at the 0100-level) 3 hrs. lect./lab

CSCI0201Z-F16

CRN: 91713

Data Structures
Data Structures Lab
Data Structures
In this course we will study the ideas and structures helpful in designing algorithms and writing programs for solving large, complex problems. The Java programming language and object-oriented paradigm are introduced in the context of important abstract data types (ADTs) such as stacks, queues, trees, and graphs. We will study efficient implementations of these ADTs, and learn classic algorithms to manipulate these structures for tasks such as sorting and searching. Prior programming experience is expected, but prior familiarity with the Java programming language is not assumed. (One CSCI course at the 0100-level) 3 hrs. lect./lab

CSCI0202A-F16

CRN: 90119

Computer Architecture
Computer Architecture
A detailed study of the hardware and software that make up a computer system. Topics include assembly language programming, digital logic design, microarchitecture, pipelines, caches, and RISC vs. CISC. The goal of the course is teach students how computers are built, how they work at the lowest level, and how this knowledge can be used to write better programs. (CSCI 0201 previously or concurrently) 3 hrs. lect./lab

CSCI0202B-F16

CRN: 92501

Computer Architecture
Computer Architecture
A detailed study of the hardware and software that make up a computer system. Topics include assembly language programming, digital logic design, microarchitecture, pipelines, caches, and RISC vs. CISC. The goal of the course is teach students how computers are built, how they work at the lowest level, and how this knowledge can be used to write better programs. (CSCI 0201 previously or concurrently) 3 hrs. lect./lab

CSCI0301A-F16

CRN: 90120

Theory of Computation
Theory of Computation
This course explores the nature of computation and what it means to compute. We study important models of computation (finite automata, push-down automata, and Turing machines) and investigate their fundamental computational power. We examine various problems and try to determine the computational power needed to solve them. Topics include deterministic versus non-deterministic computation, and a theoretical basis for the study of NP-completeness. (CSCI 0200 and CSCI 0201) 3 hrs. lect./disc.

CSCI0302A-F16

CRN: 92195

Algorithms and Complexity
Algorithms and Complexity
This course focuses on the development of correct and efficient algorithmic solutions to computational problems, and on the underlying data structures to support these algorithms. Topics include computational complexity, analysis of algorithms, proof of algorithm correctness, advanced data structures such as balanced search trees, and also important algorithmic techniques including greedy and dynamic programming. The course complements the treatment of NP-completeness in CSCI 0301. (CSCI 0200 and CSCI 0201) 3 hrs. lect./disc.

CSCI0311A-F16

CRN: 92502

Artificial Intelligence
Artificial Intelligence
Artificial Intelligence (AI) is the study of computational systems that exhibit rational behavior. Applications include strategic game playing, medical diagnosis, speech and handwriting recognition, Internet search, and robotics. Course topics include intelligent agent architectures, search, knowledge representation, logical reasoning, planning, reasoning under uncertainty, machine learning, and perception and action. (CSCI 0200 and CSCI 0201) 3 hrs. lect./lab

CSCI0413A-F16

CRN: 92409

Functional Programming
Functional Programming
In this course we will explore an approach to describing computation that focuses on functions (in the mathematical sense) rather than objects or procedures. In the process of learning a widely-used functional programming language, students will gain experience with existing patterns of higher-level abstraction in computation (exemplified by the Map-Reduce model popularized by Google), practice identifying and implementing their own higher-level abstractions, learn about classes of real-world problems that are particularly amenable to functional solutions, and implement solutions to some of those problems. Students in this course will learn approaches to problem solving using computers that will be relevant no matter what languages they use in the future. (CSCI 0200 and CSCI 0201) 3 hrs. lect./lab.

CSCI0461A-F16

CRN: 92198

Computer Graphics
Computer Graphics
Computer graphics is the study of how computers represent, manipulate, and ultimately display visual information. In this course we will focus primarily on three-dimensional graphics, touching on topics such as modeling (meshes, hierarchical models, and transformations), rendering (lighting, texturing, rasterization, and clipping), animation, and GPU programming. We will look at the mathematical foundations of these techniques as well as implementation techniques using OpenGL. (CSCI 0202 and MATH 0200) 3 hrs. lect./lab

CSCI0500A-F16

CRN: 90447

Advanced Study
Advanced Study
Individual study for qualified students in more advanced topics in computer science theory, systems, or application areas. Particularly suited for students who enter with advanced standing. (Approval required) 3 hrs. lect.

CSCI0500B-F16

CRN: 90575

Advanced Study
Advanced Study
Individual study for qualified students in more advanced topics in computer science theory, systems, or application areas. Particularly suited for students who enter with advanced standing. (Approval required) 3 hrs. lect.

CSCI0500C-F16

CRN: 90779

Advanced Study
Advanced Study
Individual study for qualified students in more advanced topics in computer science theory, systems, or application areas. Particularly suited for students who enter with advanced standing. (Approval required) 3 hrs. lect.

CSCI0500D-F16

CRN: 90576

Advanced Study
Advanced Study
Individual study for qualified students in more advanced topics in computer science theory, systems, or application areas. Particularly suited for students who enter with advanced standing. (Approval required) 3 hrs. lect.

CSCI0500E-F16

CRN: 90577

Advanced Study
Advanced Study
Individual study for qualified students in more advanced topics in computer science theory, systems, or application areas. Particularly suited for students who enter with advanced standing. (Approval required) 3 hrs. lect.

CSCI0500F-F16

CRN: 90647

Advanced Study
Advanced Study
Individual study for qualified students in more advanced topics in computer science theory, systems, or application areas. Particularly suited for students who enter with advanced standing. (Approval required) 3 hrs. lect.

CSCI0500G-F16

CRN: 91732

Advanced Study
Advanced Study
Individual study for qualified students in more advanced topics in computer science theory, systems, or application areas. Particularly suited for students who enter with advanced standing. (Approval required) 3 hrs. lect.

CSCI0500H-F16

CRN: 92549

Advanced Study
Advanced Study
Individual study for qualified students in more advanced topics in computer science theory, systems, or application areas. Particularly suited for students who enter with advanced standing. (Approval required) 3 hrs. lect.

CSCI0701A-F16

CRN: 91627

Senior Seminar
Senior Seminar
This senior seminar provides a capstone experience for computer science majors at Middlebury College. Through lectures, readings, and a series of two to three week individual and group assignments, we will introduce important concepts in research and experimental methods in computation. Examples will include: reading research papers; identifying research problems; dealing with big data; experimental design, testing and analysis; and technical writing in computer science. (Approval only).

CSCI0701B-F16

CRN: 92503

Senior Seminar
Senior Seminar
This senior seminar provides a capstone experience for computer science majors at Middlebury College. Through lectures, readings, and a series of two to three week individual and group assignments, we will introduce important concepts in research and experimental methods in computation. Examples will include: reading research papers; identifying research problems; dealing with big data; experimental design, testing and analysis; and technical writing in computer science. (Approval only).

CSCI0702A-F16

CRN: 92196

Senior Thesis
Senior Thesis
The senior thesis is required for all CSCI majors who wish to be considered for departmental honors, and is recommended for students interested in pursuing graduate study in computer science. Students will spend the semester researching and writing, and developing and experimenting as appropriate for their topic. All students will be expected to report on their work in the form of a written thesis, a poster, and an oral presentation at the end of the semester. In addition, throughout the semester, students will meet as a group to discuss research and writing, and will be expected to attend talks in the Computer Science lecture series. Before approval to join the class is granted, students are expected to have chosen a thesis adviser from the CSCI faculty, and determined a thesis topic with the guidance and approval of that adviser. (CSCI 0701 and approval required) 3 hrs. lect./disc.

Department of Computer Science

McCardell Bicentennial Hall
276 Bicentennial Way
Middlebury College
Middlebury, VT 05753