Middlebury

 

Offerings by Semester

« Spring 2013 Fall 2013 Spring 2014 »

MATH0100A-F13

Cross-Listed As:
INTD0100A-F13

CRN: 91371

A World of Mathematics
Please register via INTD 0100A

A World of Mathematics
How long will oil last? What is the fairest voting system? How can we harvest food and other resources sustainably? To explore such real-world questions we will study a variety of mathematical ideas and methods, including modeling, logical analysis, discrete dynamical systems, and elementary statistics. This is an alternative first mathematics course for students not pursuing the calculus sequence in their first semester. The only prerequisite is an interest in exploring contemporary issues using the mathematics that lies within those issues. (This course is not open to students who have had a prior course in calculus or statistics.) 3 hrs lect./disc.

MATH0116A-F13

CRN: 91509

Intro to Statistical Science

Introduction to Statistical Science
A practical introduction to statistical methods and the examination of data sets. Computer software will play a central role in analyzing a variety of real data sets from the natural and social sciences. Topics include descriptive statistics, elementary distributions for data, hypothesis tests, confidence intervals, correlation, regression, contingency tables, and analysis of variance. The course has no formal mathematics prerequisite, and is especially suited to students in the physical, social, environmental, and life sciences who seek an applied orientation to data analysis. (Credit is not given for MATH 0116 if the student has taken ECON 0210 or PSYC 0201 previously or concurrently.) 3 hrs. lect., 1 hr. computer lab.

MATH0116B-F13

CRN: 92489

Intro to Statistical Science

Introduction to Statistical Science
A practical introduction to statistical methods and the examination of data sets. Computer software will play a central role in analyzing a variety of real data sets from the natural and social sciences. Topics include descriptive statistics, elementary distributions for data, hypothesis tests, confidence intervals, correlation, regression, contingency tables, and analysis of variance. The course has no formal mathematics prerequisite, and is especially suited to students in the physical, social, environmental, and life sciences who seek an applied orientation to data analysis. (Credit is not given for MATH 0116 if the student has taken ECON 0210 or PSYC 0201 previously or concurrently.) 3 hrs. lect., 1 hr. computer lab.

MATH0116Y-F13

CRN: 92490

Intro to Statistical Science
Intro Statistical Science Lab

Introduction to Statistical Science
A practical introduction to statistical methods and the examination of data sets. Computer software will play a central role in analyzing a variety of real data sets from the natural and social sciences. Topics include descriptive statistics, elementary distributions for data, hypothesis tests, confidence intervals, correlation, regression, contingency tables, and analysis of variance. The course has no formal mathematics prerequisite, and is especially suited to students in the physical, social, environmental, and life sciences who seek an applied orientation to data analysis. (Credit is not given for MATH 0116 if the student has taken ECON 0210 or PSYC 0201 previously or concurrently.) 3 hrs. lect., 1 hr. computer lab.

MATH0116Z-F13

CRN: 92492

Intro to Statistical Science
Intro Statistical Science Lab

Introduction to Statistical Science
A practical introduction to statistical methods and the examination of data sets. Computer software will play a central role in analyzing a variety of real data sets from the natural and social sciences. Topics include descriptive statistics, elementary distributions for data, hypothesis tests, confidence intervals, correlation, regression, contingency tables, and analysis of variance. The course has no formal mathematics prerequisite, and is especially suited to students in the physical, social, environmental, and life sciences who seek an applied orientation to data analysis. (Credit is not given for MATH 0116 if the student has taken ECON 0210 or PSYC 0201 previously or concurrently.) 3 hrs. lect., 1 hr. computer lab.

MATH0121A-F13

CRN: 90162

Calculus I

Calculus I
Introductory analytic geometry and calculus. Topics include limits, continuity, differential calculus of algebraic and trigonometric functions with applications to curve sketching, optimization problems and related rates, the indefinite and definite integral, area under a curve, and the fundamental theorem of calculus. Inverse functions and the logarithmic and exponential functions are also introduced along with applications to exponential growth and decay. 4 hrs. lect./disc.

MATH0121B-F13

CRN: 90172

Calculus I

Calculus I
Introductory analytic geometry and calculus. Topics include limits, continuity, differential calculus of algebraic and trigonometric functions with applications to curve sketching, optimization problems and related rates, the indefinite and definite integral, area under a curve, and the fundamental theorem of calculus. Inverse functions and the logarithmic and exponential functions are also introduced along with applications to exponential growth and decay. 4 hrs. lect./disc.

MATH0121C-F13

CRN: 92303

Calculus I

Calculus I
Introductory analytic geometry and calculus. Topics include limits, continuity, differential calculus of algebraic and trigonometric functions with applications to curve sketching, optimization problems and related rates, the indefinite and definite integral, area under a curve, and the fundamental theorem of calculus. Inverse functions and the logarithmic and exponential functions are also introduced along with applications to exponential growth and decay. 4 hrs. lect./disc.

MATH0122A-F13

CRN: 90201

Calculus II

Calculus II
A continuation of MATH 0121, may be elected by first-year students who have had an introduction to analytic geometry and calculus in secondary school. Topics include a brief review of natural logarithm and exponential functions, calculus of the elementary transcendental functions, techniques of integration, improper integrals, applications of integrals including problems of finding volumes, infinite series and Taylor's theorem, polar coordinates, ordinary differential equations. (MATH 0121 or by waiver) 4 hrs. lect./disc.

MATH0122B-F13

CRN: 90211

Calculus II

Calculus II
A continuation of MATH 0121, may be elected by first-year students who have had an introduction to analytic geometry and calculus in secondary school. Topics include a brief review of natural logarithm and exponential functions, calculus of the elementary transcendental functions, techniques of integration, improper integrals, applications of integrals including problems of finding volumes, infinite series and Taylor's theorem, polar coordinates, ordinary differential equations. (MATH 0121 or by waiver) 4 hrs. lect./disc.

MATH0122C-F13

CRN: 90212

Calculus II

Calculus II
A continuation of MATH 0121, may be elected by first-year students who have had an introduction to analytic geometry and calculus in secondary school. Topics include a brief review of natural logarithm and exponential functions, calculus of the elementary transcendental functions, techniques of integration, improper integrals, applications of integrals including problems of finding volumes, infinite series and Taylor's theorem, polar coordinates, ordinary differential equations. (MATH 0121 or by waiver) 4 hrs. lect./disc.

MATH0200A-F13

CRN: 90215

Linear Algebra

Linear Algebra
Matrices and systems of linear equations, the Euclidean space of three dimensions and other real vector spaces, independence and dimensions, scalar products and orthogonality, linear transformations and matrix representations, eigenvalues and similarity, determinants, the inverse of a matrix and Cramer's rule. (MATH 0121 or by waiver) 3 hrs. lect./disc.

MATH0200B-F13

CRN: 90216

Linear Algebra

Linear Algebra
Matrices and systems of linear equations, the Euclidean space of three dimensions and other real vector spaces, independence and dimensions, scalar products and orthogonality, linear transformations and matrix representations, eigenvalues and similarity, determinants, the inverse of a matrix and Cramer's rule. (MATH 0121 or by waiver) 3 hrs. lect./disc.

MATH0200C-F13

CRN: 91160

Linear Algebra

Linear Algebra
Matrices and systems of linear equations, the Euclidean space of three dimensions and other real vector spaces, independence and dimensions, scalar products and orthogonality, linear transformations and matrix representations, eigenvalues and similarity, determinants, the inverse of a matrix and Cramer's rule. (MATH 0121 or by waiver) 3 hrs. lect./disc.

MATH0217A-F13

CRN: 92304

Elements of Math Bio & Ecol

Elements of Mathematical Biology and Ecology
Mathematical modeling has become an essential tool in biology and ecology. In this course we will investigate several fundamental biological and ecological models. We will learn how to analyze existing models and how to construct new models. We will develop ecological and evolutionary models that describe how biological systems change over time. Models for population growth, predator-prey interactions, competing species, the spread of infectious disease, and molecular evolution will be studied. Students will be introduced to differential and difference equations, multivariable calculus, and linear and non-linear dynamical systems. (MATH 0121 or by waiver)

MATH0223A-F13

CRN: 90274

Multivariable Calculus

Multivariable Calculus
The calculus of functions of more than one variable. Introductory vector analysis, analytic geometry of three dimensions, partial differentiation, multiple integration, line integrals, elementary vector field theory, and applications. (MATH 0122 or MATH 0200 or by waiver) 3 hrs. lect./disc.

MATH0225A-F13

CRN: 92305

Topics in Linear Alg & Diff Eq

Topics in Linear Algebra and Differential Equations
Topics may include diagonalization of matrices, quadratic forms, inner product spaces, canonical forms, the spectral theorem, positive matrices, the Cayley-Hamilton theorem, ordinary differential equations of arbitrary order, systems of first-order differential equations, power series, and eigenvalue methods of solution, applications. (MATH 0200 or by waiver) 3 hrs. lect./disc.

MATH0302A-F13

CRN: 90275

Abstract Algebra I

Abstract Algebra
Groups, subgroups, Lagrange's theorem, homomorphisms, normal subgroups and quotient groups, rings and ideals, integral domains and fields, the field of quotients of a domain, the ring of polynomials over a domain, Euclidean domains, principal ideal domains, unique factorization, factorization in a polynomial ring. (MATH 0200 or by waiver) 3 hrs. lect./disc.

MATH0311A-F13

CRN: 92306

Statistics

Statistics
An introduction to the mathematical methods and applications of statistical inference. Topics will include: survey sampling, parametric and nonparametric problems, estimation, efficiency and the Neyman-Pearsons lemma. Classical tests within the normal theory such as F-test, t-test, and chi-square test will also be considered. Methods of linear least squares are used for the study of analysis of variance and regression. There will be some emphasis on applications to other disciplines. (MATH 0310) 3 hrs. lect./disc.

MATH0318A-F13

CRN: 92307

Operations Research

Operations Research
Operations research is the utilization of quantitative methods as an aid to managerial decisions. In the course, several of these methods will be introduced and studied in both a mathematical context and a physical context. Topics included will be selected from the following: classification of problems and the formulation of models, linear programming, network optimization, transportation problems, assignment problems, integer programming, nonlinear programming, inventory theory, and game theory. (MATH 0200 or waiver)

MATH0323A-F13

CRN: 90277

Real Analysis

Real Analysis
An axiomatic treatment of the topology of the real line, real analysis, and calculus. Topics include neighborhoods, compactness, limits, continuity, differentiation, Riemann integration, and uniform convergence. (MATH 0223) 3 hrs. lect./disc.

MATH0500A-F13

CRN: 90285

Advanced Study

Advanced Study
Individual study for qualified students in more advanced topics in algebra, number theory, real or complex analysis, topology. Particularly suited for those who enter with advanced standing. (Approval required) 3 hrs. lect./disc.

MATH0500B-F13

CRN: 90712

Advanced Study

Advanced Study
Individual study for qualified students in more advanced topics in algebra, number theory, real or complex analysis, topology. Particularly suited for those who enter with advanced standing. (Approval required) 3 hrs. lect./disc.

MATH0500C-F13

CRN: 90562

Advanced Study

Advanced Study
Individual study for qualified students in more advanced topics in algebra, number theory, real or complex analysis, topology. Particularly suited for those who enter with advanced standing. (Approval required) 3 hrs. lect./disc.

MATH0500D-F13

CRN: 90853

Advanced Study

Advanced Study
Individual study for qualified students in more advanced topics in algebra, number theory, real or complex analysis, topology. Particularly suited for those who enter with advanced standing. (Approval required) 3 hrs. lect./disc.

MATH0500E-F13

CRN: 90854

Advanced Study

Advanced Study
Individual study for qualified students in more advanced topics in algebra, number theory, real or complex analysis, topology. Particularly suited for those who enter with advanced standing. (Approval required) 3 hrs. lect./disc.

MATH0500F-F13

CRN: 90855

Advanced Study

Advanced Study
Individual study for qualified students in more advanced topics in algebra, number theory, real or complex analysis, topology. Particularly suited for those who enter with advanced standing. (Approval required) 3 hrs. lect./disc.

MATH0500G-F13

CRN: 90856

Advanced Study

Advanced Study
Individual study for qualified students in more advanced topics in algebra, number theory, real or complex analysis, topology. Particularly suited for those who enter with advanced standing. (Approval required) 3 hrs. lect./disc.

MATH0500H-F13

CRN: 90857

Advanced Study

Advanced Study
Individual study for qualified students in more advanced topics in algebra, number theory, real or complex analysis, topology. Particularly suited for those who enter with advanced standing. (Approval required) 3 hrs. lect./disc.

MATH0500I-F13

CRN: 90858

Advanced Study

Advanced Study
Individual study for qualified students in more advanced topics in algebra, number theory, real or complex analysis, topology. Particularly suited for those who enter with advanced standing. (Approval required) 3 hrs. lect./disc.

MATH0500J-F13

CRN: 91021

Advanced Study

Advanced Study
Individual study for qualified students in more advanced topics in algebra, number theory, real or complex analysis, topology. Particularly suited for those who enter with advanced standing. (Approval required) 3 hrs. lect./disc.

MATH0500K-F13

CRN: 91022

Advanced Study

Advanced Study
Individual study for qualified students in more advanced topics in algebra, number theory, real or complex analysis, topology. Particularly suited for those who enter with advanced standing. (Approval required) 3 hrs. lect./disc.

MATH0500L-F13

CRN: 91023

Advanced Study

Advanced Study
Individual study for qualified students in more advanced topics in algebra, number theory, real or complex analysis, topology. Particularly suited for those who enter with advanced standing. (Approval required) 3 hrs. lect./disc.

MATH0704A-F13

CRN: 90286

Senior Seminar

Senior Seminar
Each student will explore in depth a topic in pure or applied mathematics, under one-on-one supervision by a faculty advisor. The course culminates with a major written paper and presentation. This experience emphasizes independent study, library research, expository writing, and oral presentation. The goal is to demonstrate the ability to internalize and organize a substantial piece of mathematics. Class meetings include attendance at a series of lectures designed to introduce and integrate ideas of mathematics not covered in the previous three years. Registration is by permission: Each student must have identified a topic, an advisor, and at least one principal reference source. 3 hrs. lect./disc.