John Emerson
Charles A. Dana Professor of Mathematics
Email: jemerson@middlebury.edu
Phone: work802.443.5589
Office Hours: Tues 4:15 – 5:30, Wed 3:00-4:00, Thurs 2:30 – 3:30, F 3:00 – 5:00
Download Contact Information
Degrees, Specializations & Interests:
A.B., University of Rochester; M.S., Ph.D., Cornell University; (Statistical methods, Data Analysis, Biostatistics)
Courses
Courses offered in the past four years.
▲ indicates offered in the current term
▹ indicates offered in the upcoming term[s]
INTD 1095 / MATH 1095 - Statistical Computing with R
Statistical Computing with R
This course offers an intensive introduction to the R statistical programming environment. Students will learn to use a modern programming language that incorporates object-oriented programming. Topics will include data frames, the R environment, the graphics system, probability distributions, descriptive statistics, statistical tests and confidence intervals, regression, ANOVA, tables of counts, simulation, and selected topics in statistical programming. (One course in statistics or one course in computer programming).
Winter 2010
MATH 0116 - Intro to Statistical Science
Introduction to Statistical Science
A practical introduction to statistical methods and the examination of data sets. Computer software will play a central role in analyzing a variety of real data sets from the natural and social sciences. Topics include descriptive statistics, elementary distributions for data, hypothesis tests, confidence intervals, correlation, regression, contingency tables, and analysis of variance. The course has no formal mathematics prerequisite, and is especially suited to students in the physical, social, environmental, and life sciences who seek an applied orientation to data analysis. (Credit is not given for MATH 0116 if the student has taken ECON 0210 or PSYC 0201 previously or concurrently.) 3 hrs. lect., 1 hr. computer lab.
Spring 2011, Fall 2012, Spring 2013
MATH 0122 - Calculus II
Calculus II
A continuation of MATH 0121, may be elected by first-year students who have had an introduction to analytic geometry and calculus in secondary school. Topics include a brief review of natural logarithm and exponential functions, calculus of the elementary transcendental functions, techniques of integration, improper integrals, applications of integrals including problems of finding volumes, infinite series and Taylor's theorem, polar coordinates, ordinary differential equations. (MATH 0121 or by waiver) 4 hrs. lect./disc.
Fall 2009, Spring 2010, Fall 2010, Fall 2011, Spring 2012, Fall 2012, Spring 2013
MATH 0200 - Linear Algebra ▲
Linear Algebra
Matrices and systems of linear equations, the Euclidean space of three dimensions and other real vector spaces, independence and dimensions, scalar products and orthogonality, linear transformations and matrix representations, eigenvalues and similarity, determinants, the inverse of a matrix and Cramer's rule. (MATH 0121 or by waiver) 3 hrs. lect./disc.
Fall 2013
MATH 0310 - Probability
Probability
An introduction to the concepts of probability and their applications, covering both discrete and continuous random variables. Probability spaces, elementary combinatorial analysis, densities and distributions, conditional probabilities, independence, expectation, variance, weak law of large numbers, central limit theorem, and numerous applications. (concurrent or prior MATH 0223 or by waiver) 3 hrs. lect./disc.
Fall 2009, Fall 2011
MATH 0311 - Statistics ▲
Statistics
An introduction to the mathematical methods and applications of statistical inference. Topics will include: survey sampling, parametric and nonparametric problems, estimation, efficiency and the Neyman-Pearsons lemma. Classical tests within the normal theory such as F-test, t-test, and chi-square test will also be considered. Methods of linear least squares are used for the study of analysis of variance and regression. There will be some emphasis on applications to other disciplines. (MATH 0310) 3 hrs. lect./disc.
Spring 2010, Spring 2012, Fall 2013
MATH 0323 - Real Analysis
Real Analysis
An axiomatic treatment of the topology of the real line, real analysis, and calculus. Topics include neighborhoods, compactness, limits, continuity, differentiation, Riemann integration, and uniform convergence. (MATH 0223) 3 hrs. lect./disc.
Fall 2010
MATH 0500 - Advanced Study ▲
Advanced Study
Individual study for qualified students in more advanced topics in algebra, number theory, real or complex analysis, topology. Particularly suited for those who enter with advanced standing. (Approval required) 3 hrs. lect./disc.
Fall 2009, Winter 2010, Spring 2010, Fall 2010, Winter 2011, Spring 2011, Fall 2011, Winter 2012, Spring 2012, Fall 2012, Winter 2013, Spring 2013, Fall 2013
Recent Publications
Moses, L.E., Emerson, J.D., and Hosseini, H. "Analyzing Data from Ordered Categories." In J.C. Bailar III and D. Hoaglin, Eds., Medical Uses of Statistics, 3rd Ed., Hoboken, NJ: Wiley. 2009, 311-323.
Agarwal, S., Colditz, G.A., and Emerson, J.D. "Use of Statistical Analysis in the New England Journal of Medicine." In J.C. Bailar III and D. Hoaglin, Eds., Medical Uses of Statistics, 3rd Ed., Hoboken, NJ: Wiley. 2009, 41-49.
Emerson, J.D., Brooks, R.L., and McKenzie, E.C. "College Sports and Student Achievement: The Evidence at Small Colleges." In Data-Driven Decision-Making in Intercollegiate Athletics. New Directions in Institutional Research, edited by J.L. Hoffman, J.S. Antony, and D.D. Alfaro. San Francisco: Jossey-Bass, No. 144, 2009, 65-76.