For Current Updates on COVID-19:

Michaela Kubacki

Assistant Professor of Mathematics

 work(802) 443-5293
 on leave academic year

Degrees, Specializations & Interests:

B.A., Washington & Jefferson College; M.A., University of Pittsburgh; Ph.D., University of Pittsburgh;
(Numerical Analysis, Computational Fluid Dynamics)


  1.  Ervin, V.; Kubacki, M.; Layton, W.; Moraiti, M.; Si, Z.; Trenchea, C. Partitioned penalty methods for the transport equation in the evolutionary Stokes-Darcy-transport problem. Numer. Methods Partial Differential Eq. 2019;35: 349-374.
  2. Kubacki, M.; Tran, H. Non-Iterative Partitioned Methods for Uncoupling Evolutionary Groundwater-Surface Water Flows. Fluids 2017, 2(3).
  3. Ervin, V.J.; Kubacki, M.; Layton, W.; Moraiti, M.; Si, Z.; Trenchea, C. On Limiting Behavior of Contaminant Transport Models in Coupled Surface and Groundwater Flows. Axioms 2015, 4, 518-529.
  4. Kubacki, M. and Moraiti, M. Analysis of a Second-Order, Unconditionally Stable, Partitioned Method for the Evolutionary Stokes-Darcy Model. Int. J. Numer. Anal. Mod., 12 (2015), pp. 704-730.
  5. Jiang, N.; Kubacki, M.; Layton, W.; Moraiti, M.; Tran, H. A Crank-Nicolson Leapfrog stabilization: Unconditional stability and two applications, Journal of Computational and Applied Mathematics, Volume 281, June 2015, Pages 263-276, ISSN 0377-0427.
  6. Kubacki, M. Higher-Order, Strongly Stable Methods for Uncoupling Groundwater-Surface Water Flow (Doctoral dissertation). University of Pittsburgh D-Scholarship Database, (2014).
  7. Kubacki, M. Uncoupling evolutionary groundwater-surface water flows using the Crank-Nicolson Leapfrog method. Numer. Methods Partial Differential Eq., 29:1192-1216, 2013.


No items found

Department of Mathematics

Warner Hall
303 College Street
Middlebury College
Middlebury, VT 05753