News and Events

2014-2015 SEMINARS & EVENTS:


Dr. Carol Greider, Ph.D.
2009 Nobel Laureate in Physiology or Medicine

Daniel Nathans Professor and Director of Molecular Biology & Genetics
Johns Hopkins University School of Medicine

Monday, March 9, 2015

12:30pm, MBH 216
(lunch available at 12:15pm)

Telomeres and telomerase in cancer and age-related disease

Dr. Greider will introduce the structure and mechanisms of telomere and telomerase, and discuss how telomere shortening can limit cell division. She will further explore the consequence of short telomeres in both limiting the growth of cancer cells and in initiating age-related degenerative disease.  (This talk is geared towards those most interested in the technical aspects of this topic)

4:30pm, Dana Auditorium

Telomeres and human disease: curiosity driven research brings new clinical insight

Dr. Greider will introduce the discovery of telomeres and telomerase as an example of how new approaches to clinical problems often come from unlikely places. The initial curiosity driven identification of telomeres and telomerase in the protozoan Tetrahymena, paved the way for new insights into cancer and aging. She will demonstrate how a focus on fundamental mechanisms is essential for understanding disease.  (This talk is geared towards those most interested in the broader aspects of this topic)

Sponsored by the George B. Saul II Lecture Fund, the Department of Biology, the Office of the President, the Albert D. Mead Professorship, the Program in Molecular Biology and Biochemistry, the Program in Education Studies, the Middlebury STEM Innovation Project, and Women in STEM (WinS) at Middlebury College

Apr. 3, 2015: Dana B. Barr
Dept of Environmental Health, Rollins School of Public Health, Emory University, Atlanta
Exposure Science: an emerging science spanning environmental health, chemistry, and epidemiology
12:30PM, MBH 216 (lunch available at 12:15pm)


April 24, 2015: Guy A. Caldwell, Ph.D.,

Professor of Biological Sciences, University of Alabama
“A Predictable Worm: Application of C. elegans to Investigate Neurodegenerative Diseases.
12:30PM, MBH 216 (lunch available at 12:15pm)
Co-sponsored by the Program in Neuroscience


FALL 2014:

Oct. 3, 2014:  Dr. Laura Vandenberg
Assistant Professor, Department of Environmental Health Sciences, UMass Amherst, Amherst, MA 
"From hormones to endocrine disruptors: lessons learned (and not learned)" 
Friday October 3, 2014 at 12:30 pm, MBH 216

 "We live in a chemical stew. With tens of thousands of chemicals on the market, human exposures to many compounds are widespread. In fact, scientists have measured hundreds in the human body  - including the bodies of newborns. Some of these chemicals, so-called endocrine disruptors, interfere with the actions of hormones in the body. Research from epidemiology, behavioral sciences, cell biology, environmental health sciences, toxicology, molecular biology and many other fields has contributed to our knowledge about endocrine disruptors. This talk will review some of the latest science - and discuss why public health professionals have struggled to deal with how these chemicals should be tested and regulated. We will also delve into the political arena that surrounds discussions of endocrine disruptors, and whether much of the ongoing controversy is an example of 'manufactured doubt'."  Co-Sponsored by the Department of Biology, Department of Chemistry and Biochemistry, Program in Molecular Biology & Biochemistry, and Program in Environmental Studies

Oct. 10, 2014: Julius Lucks,
School of Chemical and Biomolecular Engineering, Cornell University"Controlling Cells through RNA Folding"
12:30 pm, MBH 220 (lunch available at 12:15pm)
Cells have an amazing ability to process information, make decisions, and change their state in response to changing environments. This ability is encoded within the cellular DNA genome, which is converted into RNA and protein molecules through the basic processes of gene expression. Among the many functions these RNAs and proteins perform is regulating their own expression. In fact RNAs are now known to regulate almost all aspects of gene expression, and play central roles in controlling some of life’s most basic processes.
As with many biomolecules, RNA function is intimately related to its structure. Being a single-stranded polymer of nucleotides, RNA can fold back on itself to form structures that enable certain RNAs to block or allow gene expression processes. Central questions in biology and bioengineering are then: How do RNAs fold inside cells?, and How can we engineer these folds to control gene expression? In this talk I will present our work in addressing both of these questions, and how our work fits into the larger field of Synthetic Biology. In particular, I will highlight our recent technological breakthroughs that allow us to characterize how RNAs fold inside cells, and in constructing genetic networks out of RNA molecules that dynamically control gene expression. I will conclude with thoughts about how our work is leading us to ask deep scientific questions about the fundamental processes of RNA folding and function, and the role of RNAs in nature.
Sponsored by the Biology Department, Physics Department, Program in Molecular Biology & Biochemistry, and the Albert D. Mead Professorship

Oct. 16 & 17, 2014: Dr. Martin Chalfie, Nobel Laureate,
University Professor, Biological Sciences, Columbia University

Public Talk: "GFP: Lighting Up Life"
Thurs Oct 16 at 7:30pm in Dana Auditorium
GFP and other fluorescent proteins have revolutionized biology because they allow scientists to look at the inner workings of living cells. The story of the discovery and development of GFP provides a very nice example of  the importance of basic research on non-traditional organisms and of how scientific progress is often made: through accidental discoveries, the willingness to ignore previous assumptions and take chances, and the combined efforts of many people. 

Science Talk:
"Mechanosensory Transduction and its Modification in C. elegans"
Friday Oct 17 at 12:30pm in MBH 216

Although biologists have known the molecules that allow us to see and smell, they have been much less successful discovering the molecules that sense mechanical signals.  Using the nematode Caenorhabditis elegans, we have identified channel proteins that sense gentle touch and additional mechanisms that change the sensitivity of these mechanosensory channels.  These changes allow the animals to respond differentially to touch under various environmental conditions and to change the priority of sensory signals

SPRING 2015:

CANCELLED:  Karen Hinkle
Biology Dept, Norwich University 

Feb. 26 & 27, 2015: Hugh Taylor
Class of '88 Lecture Series
Dept of Obstetrics, Gynecology, and Reproductive Sciences
Yale School of Medicine
Feb. 26 at 4:30 pm (general audience lecture):  "Will Stem Cells Stop the Biologic Clock?"
Feb. 27 at 12:30 pm (research seminar)
"Environmental Programming of Reproductive Tract Development"

Department of Biology

McCardell Bicentennial Hall
276 Bicentennial Way
Middlebury College
Middlebury, VT 05753