## Courses

Click here for the online version of our Modern Physics Laboratory Manual for our advanced lab course PHYS 0321.

Courses offered in the past four years.

▲ *indicates offered in the current term*

▹ *indicates offered in the upcoming term[s]*

##### PHYS 0101 - Physical Reality Human Thought

**Physical Reality and Human Thought**

This course for nonscience students will explore major ideas that shape our understanding of physical reality. The course will focus on the developments of modern physics, particularly relativity and quantum theory. The physical content of these ideas will be emphasized in a nonmathematical way, and their philosophical implications discussed. Tracing the historical development of physical theories will convey a sense of the evolutionary and revolutionary aspects of scientific progress. The course concludes with contemporary attempts to understand the evolution of the universe in terms of the most fundamental physical principles. (Not open to students who have completed PHYS 0201.) 3 hrs. lect.

**DED SCI**

Spring 2012, Spring 2013

##### PHYS 0104 - Chaos Complexity and Self-Org.

**Chaos, Complexity, and Self-Organization**

A paradigm shift has occurred throughout the natural sciences in recent years. Our understanding of the strict determinism of the Newtonian world-view has been revised in surprising and fruitful new ways, providing an outlook that emphasizes the fundamental significance of open, evolving systems. This course explores recent work on chaos, fractals, complexity, and self-organization. Ideas from these fields suggest new ways of thinking about life and mind, and how they arise as emergent phenomena from a physical world of dead and mindless fundamental particles interacting through aimless fundamental forces. We will also explore the influence of these basic ideas on the humanities and the social sciences. Although the course is largely nonmathematical, students should be willing to use elementary high school algebra. 3 hrs. lect.

**DED SCI**

Spring 2011

##### PHYS 0106 - Physics for Educated Citizens ▹

**Physics for Educated Citizens**

In this course for nonscience majors we will explore topics of current interest—climate change, energy resources, nuclear processes, radiation, satellite communication—and show how each is understood within the context of physics. Our resources will be a textbook, Physics and Technology for Future Presidents, and non-technical articles of your choosing. Our goals will be to develop a working knowledge of physics as it applies to important topics, to effectively communicate that knowledge through discussions and oral presentations, and to develop an understanding of how science is grounded in data and thoroughly intertwined with society. (Not open to students who have taken FYSE 1381). 3 hrs. lect./disc.

**DED SCI**

Spring 2014, Spring 2015

##### PHYS 0109 - Newtonian Physics ▲ ▹

**Newtonian Physics**

This course examines motion as it occurs throughout the universe. Topics covered include inertia, force, Newton's laws of motion, work and energy, linear momentum, collisions, gravitation, rotational motion, torque, angular momentum, and oscillatory motion. Emphasis is on practical applications in physics, engineering, the life sciences, and everyday life. Laboratory work and lecture demonstrations illustrate basic physical principles. (MATH 0121 or MATH 0122 concurrent or prior; students who have taken high school calculus or other college calculus courses should consult with the instructor prior to registration) 3 hrs. lect/3 hrs. lab.

**DED SCI**

Fall 2010, Spring 2011, Fall 2011, Spring 2012, Fall 2012, Spring 2013, Fall 2013, Spring 2014, Fall 2014, Spring 2015

##### PHYS 0110 - Electricity & Magnetism ▲ ▹

**Electricity and Magnetism**

The physical principles of electricity and magnetism are developed and applied to the electrical structure of matter and the electromagnetic nature of light. Practical topics from electricity and magnetism include voltage, current, resistance, capacitance, inductance, and AC and DC circuits. Laboratory work includes an introduction to electronics and to important instruments such as the oscilloscope. (PHYS 0109; MATH 0122 concurrent or prior) 3 hrs. lect./3 hrs. lab.

**DED SCI**

Fall 2010, Spring 2011, Fall 2011, Spring 2012, Fall 2012, Spring 2013, Fall 2013, Spring 2014, Fall 2014, Spring 2015

##### PHYS 0111 - Thermo, Fluids, Waves & Optics ▹

**Thermodynamics, Fluids, Wave Motion, and Optics**

This lecture and laboratory course covers concepts from classical physics that are not included in PHYS 0109 and PHYS 0110, and that serve as a bridge between those two courses. Topics include thermal properties of matter, thermodynamics, fluid mechanics, wave motion, sound, and geometrical and physical optics. This course is strongly recommended for all students otherwise required to take PHYS 0109 and PHYS 0110 as part of a major or a premedical program, and is required for physics majors. (PHYS 0109, MATH 0121, or equivalent)

**DED SCI**

Winter 2011, Winter 2012, Winter 2013, Winter 2014, Spring 2015

##### PHYS 0155 - Introduction to the Universe ▲

**An Introduction to the Universe**

Our universe comprises billions of galaxies in a rapidly expanding fabric. How did it begin? Will it expand forever, or how may it end? How do the stars that compose the galaxies evolve from their births in clouds of gas, through the tranquility of middle age, to their often violent deaths? How can scientists even hope to answer such cosmic questions from our vantage point on a small planet, orbiting a very ordinary star? Are there other planets, orbiting other stars, where intelligent beings may be pondering similar issues? This introductory astronomy course, designed for nonscience majors, will explore these and other questions. Students will also become familiar with the night sky, both as part of our natural environment and as a scientific resource, through independent observations and sessions at the College Observatory. The approach requires no college-level mathematics, but students should expect to do quantitative calculations using scientific notation and occasionally to use elementary high-school algebra. (Students may not receive credit for both PHYS 0155 and PHYS 0165.) 3 hrs. lect./ hrs. lab./disc.

**DED SCI**

Fall 2010, Fall 2011, Fall 2012, Fall 2013, Fall 2014

##### PHYS 0165 - Physics in Universe

**Physics in the Universe**

This introduction to the phenomena and physical principles of the universe follows a similar syllabus to that of PHYS 0155, but with an added emphasis on analytical material. Principles of Newtonian mechanics are applied to the motions of planets, stars, and galaxies; statistical techniques help in understanding structures ranging from the interiors of stars to clusters of galaxies; and quantum principles are used to understand the radiation we receive from cosmic sources and the physical processes at work there. 3 hrs. lect., 3.5 hrs. lab./disc. (PHYS 0109 or equivalent; students may not receive credit for both PHYS 0155 and PHYS 0165)

**DED SCI**

Fall 2010, Fall 2011, Fall 2012

##### PHYS 0201 - Relativity And Quantum Physics ▲

**Relativity and Quantum Physics**

This course probes a number of areas for which classical physics has provided no adequate explanations. Topics covered include Einstein's special relativity, quantization of atomic energy levels and photons, the atomic models of Rutherford and Bohr, and wave-particle duality. (PHYS 0109, PHYS 0110, MATH 0122) 3 hrs. lect.

**DED SCI**

Fall 2010, Fall 2011, Fall 2012, Fall 2013, Fall 2014

##### PHYS 0202 - Quantum Physics Applications ▹

**Quantum Physics and Applications**

This course introduces quantum theory and statistical mechanics, and explores the Heisenberg uncertainty principle, the Schrödinger wave equation, and wave mechanics. These techniques are then applied to atomic, molecular, nuclear, and elementary particle systems. (PHYS 0201; PHYS 0212 concurrent or prior) 3 hrs. lect.

**DED SCI**

Spring 2011, Spring 2012, Spring 2013, Spring 2014, Spring 2015

##### PHYS 0212 - Applied Math For Phys. Science ▹

**Applied Mathematics for the Physical Sciences**

This course concentrates on the methods of applied mathematics used for treating the partial differential equations that commonly arise in physics, chemistry, and engineering. Topics include differential vector calculus, Fourier series, and other orthogonal function sets. Emphasis will be given to physical applications of the mathematics. Both analytic and numerical methods are employed. This course is a prerequisite for all 0300- and 0400-level physics courses. (MATH 0122; PHYS 0110 concurrent or prior) 4.5 hrs. lect.

**DED**

Spring 2011, Spring 2012, Spring 2013, Spring 2014, Spring 2015

##### PHYS 0220 - Introduction to Mathematica ▹

**Introduction to Mathematica**

Mathematica is a scientific software application that consists of a flexible high-level programming language with thousands of powerful built-in functions for symbolic, numeric, and graphical computation typical of physics and other quantitative fields. Undergraduates can use Mathematica for coursework, senior projects, and throughout their professional careers. In this course we will focus on the principles at the core of Mathematica and how these principles unify such a great range of computational capabilities. (PHYS 0109 and 0110; Recommended: MATH 0200 and a traditional “computer programming course” in high school or college)

**DED SCI WTR**

Winter 2015

##### PHYS 0221 - Electronics For Scientists ▲

**Electronics for Scientists**

An introduction to modern electronic circuits and devices, emphasizing both physical operation and practical use. Transistors and integrated circuits are considered in both analog and digital applications. Examples and laboratory experiments stress measurement and control applications in the physical and biological sciences. Students will gain hands-on familiarity with the design, use, and troubleshooting of electronic instrumentation. (PHYS 0110 or by waiver) 3 hrs. lect./3 hrs. lab.

**DED SCI**

Fall 2010, Fall 2011, Fall 2012, Fall 2013, Fall 2014

##### PHYS 0301 - Intermediate Electromagnetism ▲

**Intermediate Electromagnetism**

The unified description of electricity and magnetism is one of the greatest triumphs of physics. This course provides a thorough grounding in the nature of electric and magnetic fields and their interaction with matter. Mathematical techniques appropriate to the solution of problems in electromagnetism are also introduced. The primary emphasis is on static fields, with the full time-dependent Maxwell equations and electromagnetic waves introduced in the final part of the course. (PHYS 0212) 3 hrs. lect.

Fall 2010, Fall 2011, Fall 2012, Fall 2013, Fall 2014

##### PHYS 0302 - Electromagnetic Theory

**Electromagnetic Waves**

Maxwell's theory of the electromagnetic field provides the basis of our understanding of the nature of light, radio waves, infrared radiation, X-rays, and other forms of electromagnetic radiation. This course examines the behavior of electromagnetic waves starting from Maxwell's equations, the fundamental laws of electromagnetism. Topics include wave propagation in different materials; reflection and refraction at interfaces; applications in space communications, optics, and other fields; and relativistic electrodynamics. (PHYS 0301) 3 hr. lect.

**DED SCI**

Spring 2011, Spring 2013

##### PHYS 0321 - Experimental Physics ▲

**Experimental Techniques in Physics**

This course will cover the design and execution of experiments, and the analysis and presentation of data, at an advanced level. Laboratory experiments will be chosen to illustrate the use of electronic, mechanical, and optical instruments to investigate fundamental physical phenomena, such as the properties of atoms and nuclei and the nature of radiation. Skills in computer-based data analysis and presentation will be developed and emphasized. This course satisfies the College writing requirement. (PHYS 0201 and PHYS 0202 and PHYS 0212; MATH 0200 recommended) 3 hrs. lect./3 hrs. lab.

**CW**

Fall 2010, Fall 2011, Fall 2012, Fall 2013, Fall 2014

##### PHYS 0330 - Analytical Mechanics

**Analytical Mechanics**

An intermediate-level course in the kinematics and dynamics of particles and rigid body motion. The topics will include: analysis and application of Newton's law of mechanics; the concepts of work, energy, and power; energy conservation; momentum and momentum conservation; torque, angular momentum, and angular momentum conservation; oscillatory motion; and central-force motion. Lagrange's and Hamilton's formulations of classical mechanics will be introduced with emphasis placed on developing problem-solving strategies and techniques. (PHYS 0109 and PHYS 0212, or by waiver; MATH 0200 recommended) 3 hrs. lect.

Spring 2011, Spring 2013, Fall 2013

##### PHYS 0340 - Solid State Physics ▹

**Introduction to Solid State Physics**

In this course, the properties of solids are shown to arise naturally from their atomic composition and their structure. Elementary quantum mechanics, electromagnetism, and statistical mechanics are invoked to explore fundamental properties of crystalline solids, including their classification as metals, insulators, semiconductors, and semimetals. Topics covered include crystal structure and diffraction; crystal vibrations; electrical and thermal conduction; and the response of solids to external electric and magnetic fields. (PHYS 0202 and PHYS 0212) 3 hrs. lect.

Fall 2012, Spring 2015

##### PHYS 0350 - Statistical Mechanics

**Statistical Mechanics**

The course opens with a review of classical thermodynamics and continues with an examination of the fundamental concepts of probability, statistics, and distribution functions. These topics are followed by in-depth discussion of the concepts of energy, energy quantization, and the application of these concepts to the modeling of macroscopic systems. The remainder of the course is a study of statistical mechanics and its application to a variety of classical and quantum systems. Topics covered include statistical thermodynamics, Maxwellian distributions, imperfect gases, equipartition theorem, quantum statistics, heat capacities of solids, electromagnetic radiation, and ideal quantum gases. (PHYS 0202 and PHYS 0212) 3 hrs. lect.

Fall 2011, Fall 2013

##### PHYS 0360 - Topics In Contemporary Physics

**Topics in Contemporary Physics**

This course explores an area of current interest in physics. The topic varies from year to year, depending on faculty and student interest. The emphasis is on thorough exploration of a contemporary field of physics accessible to students with an intermediate undergraduate physics background. Students will be consulted before selection of the course topic, and a detailed description will be provided before fall term registration. (PHYS 0202 and PHYS 0212; additional prerequisites may be imposed.)

Spring 2012

##### PHYS 0370 - Cosmology ▹

**Cosmology**

Cosmology is the study of the Universe as a whole entity, including the origin, evolution, and ultimate fate of the entire Universe. In this course we will study the Big Bang, inflation, primordial nucleosynthesis, the cosmic microwave background, the formation of galaxies, and large-scale structure. The course will link observations to theory in order to address some of the current open questions in cosmology such as: what are the forms of matter and energy distributed in the Universe? What is the expansion rate of the Universe and how has it changed with time? What is the age of the Universe? What is the shape of the Universe? (PHYS 0201, PHYS 0202, and PHYS 0212) 3 hrs. lect.

**DED SCI**

Spring 2014, Spring 2015

##### PHYS 0401 - Quantum Mechanics ▲

**Quantum Mechanics**

A fundamental course in quantum mechanics aimed at understanding the mathematical structure of the theory and its application to physical phenomena at the atomic and nuclear levels. Topics include the basic postulates of quantum mechanics, operator formalism, Schrödinger equation, one-dimensional and central potentials, angular momentum and spin, perturbation theory, and systems of identical particles. (PHYS 0202 and PHYS 0212; MATH 0200 recommended) 3 hrs. lect.

Fall 2010, Fall 2011, Spring 2013, Spring 2014, Fall 2014

##### PHYS 0402 - Advanced Quantum Mechanics ▹

**Advanced Quantum Mechanics**

This course will emphasize realistic atomic and nuclear structure calculations using the techniques of perturbation theory and angular momentum coupling. A major goal is complete calculations of fine structure, hyperfine structure and the Lamb shift for the hydrogen atom in the presence of perturbing fields. The electromagnetic field is quantized and used to calculate transition rates and angular distributions for simple radiating systems. Nuclear magnetic resonance and blackbody radiation will receive extended treatment. (PHYS 0401)

Spring 2015

##### PHYS 0500 - Ind. Study & Special Topic ▲ ▹

**Independent Study and Special Topics**

(Approval required)

Fall 2010, Winter 2011, Spring 2011, Fall 2011, Winter 2012, Spring 2012, Fall 2012, Winter 2013, Spring 2013, Fall 2013, Winter 2014, Spring 2014, Fall 2014, Winter 2015, Spring 2015

##### PHYS 0704 - Senior Project ▲ ▹

**Senior Project**

Independent research project culminating in both written and oral presentations.

Fall 2011, Winter 2012, Spring 2012, Fall 2012, Winter 2013, Spring 2013, Fall 2013, Winter 2014, Spring 2014, Fall 2014, Winter 2015, Spring 2015

##### PHYS 0705 - Senior Research & Thesis ▲ ▹

**Senior Research and Thesis**

Independent research in the fall, winter, and spring terms culminating in a written thesis (two units total). (Approval required)

Fall 2010, Winter 2011, Spring 2011, Fall 2011, Winter 2012, Spring 2012, Fall 2012, Winter 2013, Spring 2013, Fall 2013, Winter 2014, Spring 2014, Fall 2014, Winter 2015, Spring 2015

##### PHYS 1105 - Ancient Astronomy ▹

**Ancient Astronomy**

In this course we will learn about astronomy through the lens of ancient civilizations. By studying the civilizations of the Babylonians, Mayans, and Greeks, we will learn how ancient astronomers determined the sizes of the Earth and Moon as well as distances to bodies in the solar system. We will employ hands-on, lab-like observations and minimum use of mathematics to learn how our ancestors understood our place in the cosmos.

**CMP SCI WTR**

Winter 2015