Sections

« Winter 2017 Spring 2017 Summer Study 2017 »

PHYS0106A-S17

CRN: 22405

Physics for Educated Citizens
Physics for Educated Citizens
In this course for nonscience majors we will explore topics of current interest—climate change, energy resources, nuclear processes, radiation, satellite communication—and show how each is understood within the context of physics. Our resources will be a textbook, Physics and Technology for Future Presidents, and non-technical articles of your choosing. Our goals will be to develop a working knowledge of physics as it applies to important topics, to effectively communicate that knowledge through discussions and oral presentations, and to develop an understanding of how science is grounded in data and thoroughly intertwined with society. (Not open to students who have taken FYSE 1381). 3 hrs. lect./disc.

PHYS0109A-S17

CRN: 20004

Newtonian Physics
Newtonian Physics
This course examines motion as it occurs throughout the universe. Topics covered include inertia, force, Newton's laws of motion, work and energy, linear momentum, collisions, gravitation, rotational motion, torque, angular momentum, and oscillatory motion. Emphasis is on practical applications in physics, engineering, the life sciences, and everyday life. Laboratory work and lecture demonstrations illustrate basic physical principles. (MATH 0121 or MATH 0122 concurrent or prior; students who have taken high school calculus or other college calculus courses should consult with the instructor prior to registration) 3 hrs. lect/3 hrs. lab.

PHYS0109W-S17

CRN: 21354

Newtonian Physics
Newtonian Physics Lab
Newtonian Physics
This course examines motion as it occurs throughout the universe. Topics covered include inertia, force, Newton's laws of motion, work and energy, linear momentum, collisions, gravitation, rotational motion, torque, angular momentum, and oscillatory motion. Emphasis is on practical applications in physics, engineering, the life sciences, and everyday life. Laboratory work and lecture demonstrations illustrate basic physical principles. (MATH 0121 or MATH 0122 concurrent or prior; students who have taken high school calculus or other college calculus courses should consult with the instructor prior to registration) 3 hrs. lect/3 hrs. lab.

PHYS0109X-S17

CRN: 20007

Newtonian Physics
Newtonian Physics Lab
Newtonian Physics
This course examines motion as it occurs throughout the universe. Topics covered include inertia, force, Newton's laws of motion, work and energy, linear momentum, collisions, gravitation, rotational motion, torque, angular momentum, and oscillatory motion. Emphasis is on practical applications in physics, engineering, the life sciences, and everyday life. Laboratory work and lecture demonstrations illustrate basic physical principles. (MATH 0121 or MATH 0122 concurrent or prior; students who have taken high school calculus or other college calculus courses should consult with the instructor prior to registration) 3 hrs. lect/3 hrs. lab.

PHYS0109Y-S17

CRN: 20008

Newtonian Physics
Newtonian Physics Lab
Newtonian Physics
This course examines motion as it occurs throughout the universe. Topics covered include inertia, force, Newton's laws of motion, work and energy, linear momentum, collisions, gravitation, rotational motion, torque, angular momentum, and oscillatory motion. Emphasis is on practical applications in physics, engineering, the life sciences, and everyday life. Laboratory work and lecture demonstrations illustrate basic physical principles. (MATH 0121 or MATH 0122 concurrent or prior; students who have taken high school calculus or other college calculus courses should consult with the instructor prior to registration) 3 hrs. lect/3 hrs. lab.

PHYS0109Z-S17

CRN: 20009

Newtonian Physics
Newtonian Physics Lab
Newtonian Physics
This course examines motion as it occurs throughout the universe. Topics covered include inertia, force, Newton's laws of motion, work and energy, linear momentum, collisions, gravitation, rotational motion, torque, angular momentum, and oscillatory motion. Emphasis is on practical applications in physics, engineering, the life sciences, and everyday life. Laboratory work and lecture demonstrations illustrate basic physical principles. (MATH 0121 or MATH 0122 concurrent or prior; students who have taken high school calculus or other college calculus courses should consult with the instructor prior to registration) 3 hrs. lect/3 hrs. lab.

PHYS0110A-S17

CRN: 20354

Electricity & Magnetism
Electricity and Magnetism
The physical principles of electricity and magnetism are developed and applied to the electrical structure of matter and the electromagnetic nature of light. Practical topics from electricity and magnetism include voltage, current, resistance, capacitance, inductance, and AC and DC circuits. Laboratory work includes an introduction to electronics and to important instruments such as the oscilloscope. (PHYS 0109; MATH 0122 concurrent or prior) 3 hrs. lect./3 hrs. lab.

PHYS0110Y-S17

CRN: 20357

Electricity & Magnetism
Electricity & Magnetism Lab
Electricity and Magnetism
The physical principles of electricity and magnetism are developed and applied to the electrical structure of matter and the electromagnetic nature of light. Practical topics from electricity and magnetism include voltage, current, resistance, capacitance, inductance, and AC and DC circuits. Laboratory work includes an introduction to electronics and to important instruments such as the oscilloscope. (PHYS 0109; MATH 0122 concurrent or prior) 3 hrs. lect./3 hrs. lab.

PHYS0110Z-S17

CRN: 20636

Electricity & Magnetism
Electricity & Magnetism Lab
Electricity and Magnetism
The physical principles of electricity and magnetism are developed and applied to the electrical structure of matter and the electromagnetic nature of light. Practical topics from electricity and magnetism include voltage, current, resistance, capacitance, inductance, and AC and DC circuits. Laboratory work includes an introduction to electronics and to important instruments such as the oscilloscope. (PHYS 0109; MATH 0122 concurrent or prior) 3 hrs. lect./3 hrs. lab.

PHYS0111A-S17

CRN: 21540

Thermo, Fluids, Waves & Optics
Thermodynamics, Fluids, Wave Motion, and Optics
This lecture and laboratory course covers concepts from classical physics that are not included in PHYS 0109 and PHYS 0110, and that serve as a bridge between those two courses. Topics include thermal properties of matter, thermodynamics, fluid mechanics, wave motion, sound, and geometrical and physical optics. This course is strongly recommended for all students otherwise required to take PHYS 0109 and PHYS 0110 as part of a major or a premedical program, and is required for physics majors. (PHYS 0109, MATH 0121, or equivalent)

PHYS0202A-S17

CRN: 20349

Quantum Physics Applications
Quantum Physics and Applications
This course introduces quantum theory and statistical mechanics, and explores the Heisenberg uncertainty principle, the Schrödinger wave equation, and wave mechanics. These techniques are then applied to atomic, molecular, nuclear, and elementary particle systems. (PHYS 0201; PHYS 0212 concurrent or prior) 3 hrs. lect.

PHYS0212A-S17

CRN: 20345

Applied Math For Phys. Science
Applied Mathematics for the Physical Sciences
This course concentrates on the methods of applied mathematics used for treating the partial differential equations that commonly arise in physics, chemistry, and engineering. Topics include differential vector calculus, Fourier series, and other orthogonal function sets. Emphasis will be given to physical applications of the mathematics. Both analytic and numerical methods are employed. This course is a prerequisite for all 0300- and 0400-level physics courses. (MATH 0122; PHYS 0110 concurrent or prior) 4.5 hrs. lect.

PHYS0241A-S17

CRN: 22141

Biomedical Imaging
Biomedical Imaging
Why do we use microscopes for thin tissue slices but x-rays for imaging through the entire body? In this course we will explore the physics of light and life through various biomedical imaging techniques. We will apply the fundamental imaging concepts of resolution, aberration, diffraction, scattering, the Fourier transform, and deconvolution. Most of the course will focus on biomedical optics, including standard optical microscopes, fluorescence imaging, spectroscopy, fiber-optic endoscopes, and laser-scanning microscopes. The latter part of the course will cover non-optical imaging, such as ultrasound, x-ray, and magnetic resonance imaging (MRI). Students will gain hands-on experience through field trips to a local hospital and the use of the Cell Imaging Facility in McCardell Bicentennial Hall. (PHYS 0111; PHYS 0212 or MATH 0223) 3 hrs. lect.

PHYS0321A-S17

CRN: 22143

Experimental Physics
Experimental Techniques in Physics
This course will cover the design and execution of experiments, and the analysis and presentation of data, at an advanced level. Laboratory experiments will be chosen to illustrate the use of electronic, mechanical, and optical instruments to investigate fundamental physical phenomena, such as the properties of atoms and nuclei and the nature of radiation. Skills in computer-based data analysis and presentation will be developed and emphasized. This course satisfies the College writing requirement. (PHYS 0201 and PHYS 0202 and PHYS 0212; MATH 0200 recommended) 3 hrs. lect./3 hrs. lab. (Approval required)

PHYS0321Y-S17

CRN: 22147

Experimental Physics
Experimental Techniques in Physics
This course will cover the design and execution of experiments, and the analysis and presentation of data, at an advanced level. Laboratory experiments will be chosen to illustrate the use of electronic, mechanical, and optical instruments to investigate fundamental physical phenomena, such as the properties of atoms and nuclei and the nature of radiation. Skills in computer-based data analysis and presentation will be developed and emphasized. This course satisfies the College writing requirement. (PHYS 0201 and PHYS 0202 and PHYS 0212; MATH 0200 recommended) 3 hrs. lect./3 hrs. lab. (Approval required)

PHYS0321Z-S17

CRN: 22148

Experimental Physics
Experimental Techniques in Physics
This course will cover the design and execution of experiments, and the analysis and presentation of data, at an advanced level. Laboratory experiments will be chosen to illustrate the use of electronic, mechanical, and optical instruments to investigate fundamental physical phenomena, such as the properties of atoms and nuclei and the nature of radiation. Skills in computer-based data analysis and presentation will be developed and emphasized. This course satisfies the College writing requirement. (PHYS 0201 and PHYS 0202 and PHYS 0212; MATH 0200 recommended) 3 hrs. lect./3 hrs. lab. (Approval required)

PHYS0370A-S17

CRN: 22142

Cosmological Physics
Cosmology
Cosmology is the study of the Universe as a whole entity, including the origin, evolution, and ultimate fate of the entire Universe. In this course we will study the Big Bang, inflation, primordial nucleosynthesis, the cosmic microwave background, the formation of galaxies, and large-scale structure. The course will link observations to theory in order to address some of the current open questions in cosmology such as: what are the forms of matter and energy distributed in the Universe? What is the expansion rate of the Universe and how has it changed with time? What is the age of the Universe? What is the shape of the Universe? (PHYS 0201, PHYS 0202, and PHYS 0212) 3 hrs. lect.

PHYS0401A-S17

CRN: 21874

Quantum Mechanics
Quantum Mechanics
A fundamental course in quantum mechanics aimed at understanding the mathematical structure of the theory and its application to physical phenomena at the atomic and nuclear levels. Topics include the basic postulates of quantum mechanics, operator formalism, Schrödinger equation, one-dimensional and central potentials, angular momentum and spin, perturbation theory, and systems of identical particles. (PHYS 0202 and PHYS 0212; MATH 0200 recommended) 3 hrs. lect.

PHYS0500A-S17

CRN: 20580

Ind. Study & Special Topic
Independent Study and Special Topics
(Approval required)

PHYS0500B-S17

CRN: 20044

Ind. Study & Special Topic
Independent Study and Special Topics
(Approval required)

PHYS0500C-S17

CRN: 20579

Ind. Study & Special Topic
Independent Study and Special Topics
(Approval required)

PHYS0500D-S17

CRN: 20766

Ind. Study & Special Topic
Independent Study and Special Topics
(Approval required)

PHYS0500E-S17

CRN: 20767

Ind. Study & Special Topic
Independent Study and Special Topics
(Approval required)

PHYS0500G-S17

CRN: 20768

Ind. Study & Special Topic
Independent Study and Special Topics
(Approval required)

PHYS0500H-S17

CRN: 20770

Ind. Study & Special Topic
Independent Study and Special Topics
(Approval required)

PHYS0500I-S17

CRN: 21628

Ind. Study & Special Topic
Independent Study and Special Topics
(Approval required)

PHYS0704A-S17

CRN: 21154

Senior Project
Senior Project
Independent research project culminating in both written and oral presentations.

PHYS0705A-S17

CRN: 20581

Senior Research & Thesis
Senior Research and Thesis
Independent research in the fall, winter, and spring terms culminating in a written thesis (two units total). (Approval required)

PHYS0705B-S17

CRN: 20053

Senior Research & Thesis
Senior Research and Thesis
Independent research in the fall, winter, and spring terms culminating in a written thesis (two units total). (Approval required)

PHYS0705C-S17

CRN: 20582

Senior Research & Thesis
Senior Research and Thesis
Independent research in the fall, winter, and spring terms culminating in a written thesis (two units total). (Approval required)

PHYS0705D-S17

CRN: 20769

Senior Research & Thesis
Senior Research and Thesis
Independent research in the fall, winter, and spring terms culminating in a written thesis (two units total). (Approval required)

PHYS0705E-S17

CRN: 20054

Senior Research & Thesis
Senior Research and Thesis
Independent research in the fall, winter, and spring terms culminating in a written thesis (two units total). (Approval required)

PHYS0705G-S17

CRN: 20771

Senior Research & Thesis
Senior Research and Thesis
Independent research in the fall, winter, and spring terms culminating in a written thesis (two units total). (Approval required)

PHYS0705H-S17

CRN: 20055

Senior Research & Thesis
Senior Research and Thesis
Independent research in the fall, winter, and spring terms culminating in a written thesis (two units total). (Approval required)

PHYS0705I-S17

CRN: 21629

Senior Research & Thesis
Senior Research and Thesis
Independent research in the fall, winter, and spring terms culminating in a written thesis (two units total). (Approval required)

Department of Physics

McCardell Bicentennial Hall
276 Bicentennial Way
Middlebury College
Middlebury, VT 05753