COVID-19: Essential Information

Sections

« Winter 2021 Spring 2021

PHYS0106A-S21

CRN: 22424

Physics for Educated Citizens
Physics for Educated Citizens
In this course for nonscience majors we will explore topics of current interest—climate change, energy resources, nuclear processes, radiation, satellite communication—and show how each is understood within the context of physics. Our resources will be a textbook, Physics and Technology for Future Presidents, and non-technical articles of your choosing. Our goals will be to develop a working knowledge of physics as it applies to important topics, to effectively communicate that knowledge through discussions and oral presentations, and to develop an understanding of how science is grounded in data and thoroughly intertwined with society. 3 hrs. lect./disc.

PHYS0109A-S21

CRN: 20004

Newtonian Physics
Newtonian Physics
This calculus-based course examines motion as it occurs throughout the universe. Topics covered include inertia, force, Newton's laws of motion, work and energy, linear momentum, collisions, gravitation, rotational motion, torque, angular momentum, and oscillatory motion. Emphasis is on practical applications in physics, engineering, the life sciences, and everyday life. Laboratory work and lecture demonstrations illustrate basic physical principles. (MATH 0121 or MATH 0122 concurrent or prior; students who have taken high school calculus or other college calculus courses should consult with the instructor prior to registration) 3 hrs. lect/3 hrs. lab.

PHYS0109R-S21

CRN: 22779

Newtonian Physics
Newtonian Physics Lab
Newtonian Physics
This calculus-based course examines motion as it occurs throughout the universe. Topics covered include inertia, force, Newton's laws of motion, work and energy, linear momentum, collisions, gravitation, rotational motion, torque, angular momentum, and oscillatory motion. Emphasis is on practical applications in physics, engineering, the life sciences, and everyday life. Laboratory work and lecture demonstrations illustrate basic physical principles. (MATH 0121 or MATH 0122 concurrent or prior; students who have taken high school calculus or other college calculus courses should consult with the instructor prior to registration) 3 hrs. lect/3 hrs. lab.

PHYS0109T-S21

CRN: 22781

Newtonian Physics
Newtonian Physics Lab
Newtonian Physics
This calculus-based course examines motion as it occurs throughout the universe. Topics covered include inertia, force, Newton's laws of motion, work and energy, linear momentum, collisions, gravitation, rotational motion, torque, angular momentum, and oscillatory motion. Emphasis is on practical applications in physics, engineering, the life sciences, and everyday life. Laboratory work and lecture demonstrations illustrate basic physical principles. (MATH 0121 or MATH 0122 concurrent or prior; students who have taken high school calculus or other college calculus courses should consult with the instructor prior to registration) 3 hrs. lect/3 hrs. lab.

PHYS0109U-S21

CRN: 22782

Newtonian Physics
Newtonian Physics Lab
Newtonian Physics
This calculus-based course examines motion as it occurs throughout the universe. Topics covered include inertia, force, Newton's laws of motion, work and energy, linear momentum, collisions, gravitation, rotational motion, torque, angular momentum, and oscillatory motion. Emphasis is on practical applications in physics, engineering, the life sciences, and everyday life. Laboratory work and lecture demonstrations illustrate basic physical principles. (MATH 0121 or MATH 0122 concurrent or prior; students who have taken high school calculus or other college calculus courses should consult with the instructor prior to registration) 3 hrs. lect/3 hrs. lab.

PHYS0109V-S21

CRN: 22873

Newtonian Physics
Newtonian Physics Lab
Newtonian Physics
This calculus-based course examines motion as it occurs throughout the universe. Topics covered include inertia, force, Newton's laws of motion, work and energy, linear momentum, collisions, gravitation, rotational motion, torque, angular momentum, and oscillatory motion. Emphasis is on practical applications in physics, engineering, the life sciences, and everyday life. Laboratory work and lecture demonstrations illustrate basic physical principles. (MATH 0121 or MATH 0122 concurrent or prior; students who have taken high school calculus or other college calculus courses should consult with the instructor prior to registration) 3 hrs. lect/3 hrs. lab.

PHYS0109W-S21

CRN: 21655

Newtonian Physics
Newtonian Physics Lab
Newtonian Physics
This calculus-based course examines motion as it occurs throughout the universe. Topics covered include inertia, force, Newton's laws of motion, work and energy, linear momentum, collisions, gravitation, rotational motion, torque, angular momentum, and oscillatory motion. Emphasis is on practical applications in physics, engineering, the life sciences, and everyday life. Laboratory work and lecture demonstrations illustrate basic physical principles. (MATH 0121 or MATH 0122 concurrent or prior; students who have taken high school calculus or other college calculus courses should consult with the instructor prior to registration) 3 hrs. lect/3 hrs. lab.

PHYS0109X-S21

CRN: 20006

Newtonian Physics
Newtonian Physics Lab
Newtonian Physics
This calculus-based course examines motion as it occurs throughout the universe. Topics covered include inertia, force, Newton's laws of motion, work and energy, linear momentum, collisions, gravitation, rotational motion, torque, angular momentum, and oscillatory motion. Emphasis is on practical applications in physics, engineering, the life sciences, and everyday life. Laboratory work and lecture demonstrations illustrate basic physical principles. (MATH 0121 or MATH 0122 concurrent or prior; students who have taken high school calculus or other college calculus courses should consult with the instructor prior to registration) 3 hrs. lect/3 hrs. lab.

PHYS0109Y-S21

CRN: 20007

Newtonian Physics
Newtonian Physics Lab
Newtonian Physics
This calculus-based course examines motion as it occurs throughout the universe. Topics covered include inertia, force, Newton's laws of motion, work and energy, linear momentum, collisions, gravitation, rotational motion, torque, angular momentum, and oscillatory motion. Emphasis is on practical applications in physics, engineering, the life sciences, and everyday life. Laboratory work and lecture demonstrations illustrate basic physical principles. (MATH 0121 or MATH 0122 concurrent or prior; students who have taken high school calculus or other college calculus courses should consult with the instructor prior to registration) 3 hrs. lect/3 hrs. lab.

PHYS0109Z-S21

CRN: 20008

Newtonian Physics
Newtonian Physics Lab
Newtonian Physics
This calculus-based course examines motion as it occurs throughout the universe. Topics covered include inertia, force, Newton's laws of motion, work and energy, linear momentum, collisions, gravitation, rotational motion, torque, angular momentum, and oscillatory motion. Emphasis is on practical applications in physics, engineering, the life sciences, and everyday life. Laboratory work and lecture demonstrations illustrate basic physical principles. (MATH 0121 or MATH 0122 concurrent or prior; students who have taken high school calculus or other college calculus courses should consult with the instructor prior to registration) 3 hrs. lect/3 hrs. lab.

PHYS0110A-S21

CRN: 20319

Electricity & Magnetism
Electricity and Magnetism
The physical principles of electricity and magnetism are developed with calculus and applied to the electrical structure of matter and the electromagnetic nature of light. Practical topics from electricity and magnetism include voltage, current, resistance, capacitance, inductance, and AC and DC circuits. Laboratory work includes an introduction to electronics and to important instruments such as the oscilloscope. (PHYS 0109, MATH 0122) 3 hrs. lect./3 hrs. lab.

PHYS0110W-S21

CRN: 22783

Electricity & Magnetism
Electricity & Magnetism Lab
Electricity and Magnetism
The physical principles of electricity and magnetism are developed with calculus and applied to the electrical structure of matter and the electromagnetic nature of light. Practical topics from electricity and magnetism include voltage, current, resistance, capacitance, inductance, and AC and DC circuits. Laboratory work includes an introduction to electronics and to important instruments such as the oscilloscope. (PHYS 0109, MATH 0122) 3 hrs. lect./3 hrs. lab.

PHYS0110X-S21

CRN: 22784

Electricity & Magnetism
Electricity & Magnetism Lab
Electricity and Magnetism
The physical principles of electricity and magnetism are developed with calculus and applied to the electrical structure of matter and the electromagnetic nature of light. Practical topics from electricity and magnetism include voltage, current, resistance, capacitance, inductance, and AC and DC circuits. Laboratory work includes an introduction to electronics and to important instruments such as the oscilloscope. (PHYS 0109, MATH 0122) 3 hrs. lect./3 hrs. lab.

PHYS0110Y-S21

CRN: 20320

Electricity & Magnetism
Electricity & Magnetism Lab
Electricity and Magnetism
The physical principles of electricity and magnetism are developed with calculus and applied to the electrical structure of matter and the electromagnetic nature of light. Practical topics from electricity and magnetism include voltage, current, resistance, capacitance, inductance, and AC and DC circuits. Laboratory work includes an introduction to electronics and to important instruments such as the oscilloscope. (PHYS 0109, MATH 0122) 3 hrs. lect./3 hrs. lab.

PHYS0110Z-S21

CRN: 20571

Electricity & Magnetism
Electricity & Magnetism Lab
Electricity and Magnetism
The physical principles of electricity and magnetism are developed with calculus and applied to the electrical structure of matter and the electromagnetic nature of light. Practical topics from electricity and magnetism include voltage, current, resistance, capacitance, inductance, and AC and DC circuits. Laboratory work includes an introduction to electronics and to important instruments such as the oscilloscope. (PHYS 0109, MATH 0122) 3 hrs. lect./3 hrs. lab.

PHYS0111A-S21

CRN: 21315

Thermo, Fluids, Waves & Optics
Thermodynamics, Fluids, Wave Motion, and Optics
This calculus-based lecture and laboratory course covers concepts from classical physics that are not included in PHYS 0109 and PHYS 0110, and that serve as a bridge between those two courses. Topics include thermal properties of matter, thermodynamics, fluid mechanics, wave motion, sound, and geometrical and physical optics. This course is strongly recommended for all students otherwise required to take PHYS 0109 and PHYS 0110 as part of a major or a premedical program, and is required for physics majors. (PHYS 0109, MATH 0121, or equivalent) 3 hrs. lect./3 hrs. lab.

PHYS0111U-S21

CRN: 22787

Thermo, Fluids, Waves & Optics
Thermo, Fluids, Waves &Opt Lab
Thermodynamics, Fluids, Wave Motion, and Optics
This calculus-based lecture and laboratory course covers concepts from classical physics that are not included in PHYS 0109 and PHYS 0110, and that serve as a bridge between those two courses. Topics include thermal properties of matter, thermodynamics, fluid mechanics, wave motion, sound, and geometrical and physical optics. This course is strongly recommended for all students otherwise required to take PHYS 0109 and PHYS 0110 as part of a major or a premedical program, and is required for physics majors. (PHYS 0109, MATH 0121, or equivalent) 3 hrs. lect./3 hrs. lab.

PHYS0111V-S21

CRN: 22788

Thermo, Fluids, Waves & Optics
Thermo, Fluids, Waves &Opt Lab
Thermodynamics, Fluids, Wave Motion, and Optics
This calculus-based lecture and laboratory course covers concepts from classical physics that are not included in PHYS 0109 and PHYS 0110, and that serve as a bridge between those two courses. Topics include thermal properties of matter, thermodynamics, fluid mechanics, wave motion, sound, and geometrical and physical optics. This course is strongly recommended for all students otherwise required to take PHYS 0109 and PHYS 0110 as part of a major or a premedical program, and is required for physics majors. (PHYS 0109, MATH 0121, or equivalent) 3 hrs. lect./3 hrs. lab.

PHYS0111W-S21

CRN: 21773

Thermo, Fluids, Waves & Optics
Thermo, Fluids, Waves &Opt Lab
Thermodynamics, Fluids, Wave Motion, and Optics
This calculus-based lecture and laboratory course covers concepts from classical physics that are not included in PHYS 0109 and PHYS 0110, and that serve as a bridge between those two courses. Topics include thermal properties of matter, thermodynamics, fluid mechanics, wave motion, sound, and geometrical and physical optics. This course is strongly recommended for all students otherwise required to take PHYS 0109 and PHYS 0110 as part of a major or a premedical program, and is required for physics majors. (PHYS 0109, MATH 0121, or equivalent) 3 hrs. lect./3 hrs. lab.

PHYS0111X-S21

CRN: 21613

Thermo, Fluids, Waves & Optics
Thermo, Fluids, Waves &Opt Lab
Thermodynamics, Fluids, Wave Motion, and Optics
This calculus-based lecture and laboratory course covers concepts from classical physics that are not included in PHYS 0109 and PHYS 0110, and that serve as a bridge between those two courses. Topics include thermal properties of matter, thermodynamics, fluid mechanics, wave motion, sound, and geometrical and physical optics. This course is strongly recommended for all students otherwise required to take PHYS 0109 and PHYS 0110 as part of a major or a premedical program, and is required for physics majors. (PHYS 0109, MATH 0121, or equivalent) 3 hrs. lect./3 hrs. lab.

PHYS0111Y-S21

CRN: 21614

Thermo, Fluids, Waves & Optics
Thermo, Fluids, Waves &Opt Lab
Thermodynamics, Fluids, Wave Motion, and Optics
This calculus-based lecture and laboratory course covers concepts from classical physics that are not included in PHYS 0109 and PHYS 0110, and that serve as a bridge between those two courses. Topics include thermal properties of matter, thermodynamics, fluid mechanics, wave motion, sound, and geometrical and physical optics. This course is strongly recommended for all students otherwise required to take PHYS 0109 and PHYS 0110 as part of a major or a premedical program, and is required for physics majors. (PHYS 0109, MATH 0121, or equivalent) 3 hrs. lect./3 hrs. lab.

PHYS0111Z-S21

CRN: 21615

Thermo, Fluids, Waves & Optics
Thermo, Fluids, Waves &Opt Lab
Thermodynamics, Fluids, Wave Motion, and Optics
This calculus-based lecture and laboratory course covers concepts from classical physics that are not included in PHYS 0109 and PHYS 0110, and that serve as a bridge between those two courses. Topics include thermal properties of matter, thermodynamics, fluid mechanics, wave motion, sound, and geometrical and physical optics. This course is strongly recommended for all students otherwise required to take PHYS 0109 and PHYS 0110 as part of a major or a premedical program, and is required for physics majors. (PHYS 0109, MATH 0121, or equivalent) 3 hrs. lect./3 hrs. lab.

PHYS0202A-S21

CRN: 20315

Quantum Physics Applications
Quantum Physics and Applications
This course introduces quantum theory and statistical mechanics, and explores the Heisenberg uncertainty principle, the Schrödinger wave equation, and wave mechanics. These techniques are then applied to atomic, molecular, nuclear, and elementary particle systems. (PHYS 0201; PHYS 0212 concurrent or prior) 3 hrs. lect.

PHYS0212A-S21

CRN: 20311

Applied Math For Phys. Science
Applied Mathematics for the Physical Sciences
This course concentrates on the methods of applied mathematics used for treating the partial differential equations that commonly arise in physics, chemistry, and engineering. Topics include differential vector calculus, Fourier series, and other orthogonal function sets. Emphasis will be given to physical applications of the mathematics. This course is a prerequisite for all 0300- and 0400-level physics courses. (MATH 0122; PHYS 0110 concurrent or prior) 4.5 hrs. lect.

PHYS0212B-S21

CRN: 22911

Applied Math For Phys. Science
Applied Mathematics for the Physical Sciences
This course concentrates on the methods of applied mathematics used for treating the partial differential equations that commonly arise in physics, chemistry, and engineering. Topics include differential vector calculus, Fourier series, and other orthogonal function sets. Emphasis will be given to physical applications of the mathematics. This course is a prerequisite for all 0300- and 0400-level physics courses. (MATH 0122; PHYS 0110 concurrent or prior) 4.5 hrs. lect.

PHYS0255A-S21

CRN: 22793

Intro to Astrophysics
An Introduction to Astrophysics
In this course students will learn the fundamental concepts and techniques used by astronomers to understand the universe and its contents. These include the physics of light (which conveys the properties of astrophysical phenomena) and gravity (the fundamental force that drives orbits) as well as stellar and galactic evolution. Beginning with the Sun, we will use these tools to study the nature of stars, nuclear processes, and stellar evolution, including the deaths of stars and supernova explosions. Continuing with the Milky Way galaxy, we will also study the nature and structure of galaxies including their stellar populations, gas content, and star formation. Finally, we will investigate the large-scale environment of galaxies, galaxy mergers and interactions, active galaxies, and their evolution. (PHYS 0111, PHYS 0212 or MATH 0223) 3 hrs. lect.

PHYS0321A-S21

CRN: 21868

Experimental Physics
Experimental Techniques in Physics
This course will cover the design and execution of experiments, and the analysis and presentation of data, at an advanced level. Laboratory experiments will be chosen to illustrate the use of electronic, mechanical, and optical instruments to investigate fundamental physical phenomena, such as the properties of atoms and nuclei and the nature of radiation. Skills in computer-based data analysis and presentation will be developed and emphasized. This course satisfies the College writing requirement. (PHYS 0111 concurrent or prior; PHYS 0201 and PHYS 0202 and PHYS 0212; MATH 0200 recommended) 3 hrs. lect./3 hrs. lab/1 hr disc. (Approval required)

PHYS0321X-S21

CRN: 22165

Experimental Physics
Experimental Physics Lab
Experimental Techniques in Physics
This course will cover the design and execution of experiments, and the analysis and presentation of data, at an advanced level. Laboratory experiments will be chosen to illustrate the use of electronic, mechanical, and optical instruments to investigate fundamental physical phenomena, such as the properties of atoms and nuclei and the nature of radiation. Skills in computer-based data analysis and presentation will be developed and emphasized. This course satisfies the College writing requirement. (PHYS 0111 concurrent or prior; PHYS 0201 and PHYS 0202 and PHYS 0212; MATH 0200 recommended) 3 hrs. lect./3 hrs. lab/1 hr disc. (Approval required)

PHYS0321Y-S21

CRN: 21869

Experimental Physics
Experimental Physics Lab
Experimental Techniques in Physics
This course will cover the design and execution of experiments, and the analysis and presentation of data, at an advanced level. Laboratory experiments will be chosen to illustrate the use of electronic, mechanical, and optical instruments to investigate fundamental physical phenomena, such as the properties of atoms and nuclei and the nature of radiation. Skills in computer-based data analysis and presentation will be developed and emphasized. This course satisfies the College writing requirement. (PHYS 0111 concurrent or prior; PHYS 0201 and PHYS 0202 and PHYS 0212; MATH 0200 recommended) 3 hrs. lect./3 hrs. lab/1 hr disc. (Approval required)

PHYS0321Z-S21

CRN: 21870

Experimental Physics
Experimental Physics Lab
Experimental Techniques in Physics
This course will cover the design and execution of experiments, and the analysis and presentation of data, at an advanced level. Laboratory experiments will be chosen to illustrate the use of electronic, mechanical, and optical instruments to investigate fundamental physical phenomena, such as the properties of atoms and nuclei and the nature of radiation. Skills in computer-based data analysis and presentation will be developed and emphasized. This course satisfies the College writing requirement. (PHYS 0111 concurrent or prior; PHYS 0201 and PHYS 0202 and PHYS 0212; MATH 0200 recommended) 3 hrs. lect./3 hrs. lab/1 hr disc. (Approval required)

PHYS0350A-S21

CRN: 21871

Statistical Mechanics
Statistical Mechanics
This course is a study of statistical mechanics and its applications to a variety of classical and quantum systems. It includes a discussion of microstates, macrostates, and entropy, and systematically introduces the microcanonical, canonical, grand canonical, and isobaric ensembles. This underlying theory is applied to topics including classical thermodynamics, the equipartition theorem, electromagnetic blackbody radiation, heat capacities of solids, and ideal classical and quantum gases, with a focus on Bose-Einstein condensation and degenerate Fermi systems. (PHYS 0202 and PHYS 0212) 3 hrs. lect.

PHYS0350B-S21

CRN: 22912

Statistical Mechanics
Statistical Mechanics
This course is a study of statistical mechanics and its applications to a variety of classical and quantum systems. It includes a discussion of microstates, macrostates, and entropy, and systematically introduces the microcanonical, canonical, grand canonical, and isobaric ensembles. This underlying theory is applied to topics including classical thermodynamics, the equipartition theorem, electromagnetic blackbody radiation, heat capacities of solids, and ideal classical and quantum gases, with a focus on Bose-Einstein condensation and degenerate Fermi systems. (PHYS 0202 and PHYS 0212) 3 hrs. lect.

PHYS0401A-S21

CRN: 21429

Quantum Mechanics
Quantum Mechanics
A fundamental course in quantum mechanics aimed at understanding the mathematical structure of the theory and its application to physical phenomena at the atomic and nuclear levels. Topics include the basic postulates of quantum mechanics, operator formalism, Schrödinger equation, one-dimensional and central potentials, angular momentum and spin, perturbation theory, and systems of identical particles. (PHYS 0202 and PHYS 0212; MATH 0200 recommended) 3 hrs. lect.

PHYS0500A-S21

CRN: 20519

Ind. Study & Special Topic
Independent Study and Special Topics
(Approval required)

PHYS0500C-S21

CRN: 20518

Ind. Study & Special Topic
Independent Study and Special Topics
(Approval required)

PHYS0500D-S21

CRN: 20682

Ind. Study & Special Topic
Independent Study and Special Topics
(Approval required)

PHYS0500E-S21

CRN: 20683

Ind. Study & Special Topic
Independent Study and Special Topics
(Approval required)

PHYS0500F-S21

CRN: 20573

Ind. Study & Special Topic
Independent Study and Special Topics
(Approval required)

PHYS0500H-S21

CRN: 20686

Ind. Study & Special Topic
Independent Study and Special Topics
(Approval required)

PHYS0500I-S21

CRN: 21349

Ind. Study & Special Topic
Independent Study and Special Topics
(Approval required)

PHYS0500J-S21

CRN: 21737

Ind. Study & Special Topic
Independent Study and Special Topics
(Approval required)

PHYS0704A-S21

CRN: 21016

Senior Project
Senior Project
Independent research project incorporating both written and oral presentations.

PHYS0705A-S21

CRN: 20520

Senior Research & Thesis
Senior Research and Thesis
Independent research in the fall, winter, and spring terms culminating in a written thesis (two units total). (Approval required)

PHYS0705C-S21

CRN: 20521

Senior Research & Thesis
Senior Research and Thesis
Independent research in the fall, winter, and spring terms culminating in a written thesis (two units total). (Approval required)

PHYS0705D-S21

CRN: 20685

Senior Research & Thesis
Senior Research and Thesis
Independent research in the fall, winter, and spring terms culminating in a written thesis (two units total). (Approval required)

PHYS0705E-S21

CRN: 20042

Senior Research & Thesis
Senior Research and Thesis
Independent research in the fall, winter, and spring terms culminating in a written thesis (two units total). (Approval required)

PHYS0705F-S21

CRN: 20574

Senior Research & Thesis
Senior Research and Thesis
Independent research in the fall, winter, and spring terms culminating in a written thesis (two units total). (Approval required)

PHYS0705G-S21

CRN: 20687

Senior Research & Thesis
Senior Research and Thesis
Independent research in the fall, winter, and spring terms culminating in a written thesis (two units total). (Approval required)

PHYS0705H-S21

CRN: 20043

Senior Research & Thesis
Senior Research and Thesis
Independent research in the fall, winter, and spring terms culminating in a written thesis (two units total). (Approval required)

PHYS0705I-S21

CRN: 21350

Senior Research & Thesis
Senior Research and Thesis
Independent research in the fall, winter, and spring terms culminating in a written thesis (two units total). (Approval required)

PHYS0705J-S21

CRN: 21738

Senior Research & Thesis
Senior Research and Thesis
Independent research in the fall, winter, and spring terms culminating in a written thesis (two units total). (Approval required)

Department of Physics

McCardell Bicentennial Hall
276 Bicentennial Way
Middlebury College
Middlebury, VT 05753