Sections
« Winter 2014  Spring 2014  Fall 2014 » 

CRN: 20026 
The Computing Age
The Computing Age
In this course we will provide a broad introductory overview of the discipline of computer science, with no prerequisites or assumed prior knowledge of computers or programming. A significant component of the course is an introduction to algorithmic concepts and to programming using Python; programming assignments will explore algorithmic strategies such as selection, iteration, divideandconquer, and recursion, as well as introducing the Python programming language. Additional topics will include: the structure and organization of computers, the Internet and World Wide Web, abstraction as a means of managing complexity, social and ethical computing issues, and the question "What is computation?" 3 hr. lect./lab


CRN: 22470 
The Computing Age


CRN: 22471 
The Computing Age


CRN: 22472 
The Computing Age


CRN: 22066 
Computing for the Sciences
Computing for the Sciences
In this course we will provide an introduction to the field of computer science geared towards students interested in mathematics and the natural sciences. We will study problemsolving approaches and computational techniques utilized in a variety of domains including biology, chemistry, physics, and engineering. Students will learn how to program in Python and other languages, how to extract information from large data sets, and how to utilize a common technique employed in scientific computation. The course has no prerequisites and assumes no prior experience with programming or computer science. 3 hrs. lect./lab


CRN: 22067 
Computing for the Sciences
Computing for the Sciences
In this course we will provide an introduction to the field of computer science geared towards students interested in mathematics and the natural sciences. We will study problemsolving approaches and computational techniques utilized in a variety of domains including biology, chemistry, physics, and engineering. Students will learn how to program in Python and other languages, how to extract information from large data sets, and how to utilize a common technique employed in scientific computation. The course has no prerequisites and assumes no prior experience with programming or computer science. 3 hrs. lect./lab


CRN: 21348 
Math Foundations of Computing
Mathematical Foundations of Computing
In this course we will provide an introduction to the mathematical foundations of computer science, with an emphasis on formal reasoning. Topics will include propositional and predicate logic, sets, functions, and relations; basic number theory; mathematical induction and other proof methods; combinatorics, probability, and recurrence relations; graph theory; and models of computation. (One CSCI course at the 0100level previously or concurrently; formerly CSCI 0102) 3 hrs. lect./lab


CRN: 20062 
Data Structures
Data Structures
In this course we will study the ideas and structures helpful in designing algorithms and writing programs for solving large, complex problems. The Java programming language and objectoriented paradigm are introduced in the context of important abstract data types (ADTs) such as stacks, queues, trees, and graphs. We will study efficient implementations of these ADTs, and learn classic algorithms to manipulate these structures for tasks such as sorting and searching. Prior programming experience is expected, but prior familiarity with the Java programming language is not assumed. (One CSCI course at the 0100level) 3 hrs. lect./lab


CRN: 20418 
Algorithms and Complexity
Algorithms and Complexity
This course focuses on the development of correct and efficient algorithmic solutions to computational problems, and on the underlying data structures to support these algorithms. Topics include computational complexity, analysis of algorithms, proof of algorithm correctness, advanced data structures such as balanced search trees, and also important algorithmic techniques including greedy and dynamic programming. The course complements the treatment of NPcompleteness in CSCI 0301. (CSCI 0200 and CSCI 0201) 3 hrs. lect./disc.


CRN: 22435 
Information Visualization
Information Visualization
Information visualization is used to reveal patterns, trends, and outliers within abstract data. In this course we will cover topics such as the transformation of data to visual representations, common approaches to dealing with different types of data, perceptual issues that govern how visualizations are interpreted, and the development of interactive visualization tools. This course will culminate in a significant final visualization project. (CSCI 0201)


CRN: 20320 
Advanced Study
Advanced Study
Individual study for qualified students in more advanced topics in computer science theory, systems, or application areas. Particularly suited for students who enter with advanced standing. (Approval required) 3 hrs. lect.


CRN: 20634 
Advanced Study
Advanced Study
Individual study for qualified students in more advanced topics in computer science theory, systems, or application areas. Particularly suited for students who enter with advanced standing. (Approval required) 3 hrs. lect.


CRN: 20635 
Advanced Study
Advanced Study
Individual study for qualified students in more advanced topics in computer science theory, systems, or application areas. Particularly suited for students who enter with advanced standing. (Approval required) 3 hrs. lect.


CRN: 20792 
Advanced Study
Advanced Study
Individual study for qualified students in more advanced topics in computer science theory, systems, or application areas. Particularly suited for students who enter with advanced standing. (Approval required) 3 hrs. lect.


CRN: 22469 
Advanced Study
Advanced Study
Individual study for qualified students in more advanced topics in computer science theory, systems, or application areas. Particularly suited for students who enter with advanced standing. (Approval required) 3 hrs. lect.


CRN: 20629 
Senior Seminar
Senior Seminar
Each student will complete a major capstone project in this course. This project can take the form of either (1) a thesis on a topic chosen with the advice of a faculty member, or (2) a group programming project approved by the computer science faculty. All students will present their work at the end of the semester. In addition, during the academic year, all seniors are expected to attend a series of lectures designed to introduce and integrate ideas of computer science not covered in other coursework. 3 hrs. lect./disc
