Steve Abbott
Professor of Mathematics
abbott@middlebury.edu
work(802) 443-2256
Spring 2021: Monday and Tuesday 2:00-3:00 PM, Wednesday & Thursday 3:00-4:00 PM, in person or via zoom as needed, and by appointment
75 Shannon 102B
Degrees, Specializations & Interests:
A.B., Colgate University; M.S., Ph.D., University of Virginia; (Functional Analysis, Operator Theory)
Awarded the 2010 Perkins Award for Excellence in Teaching, see story here.
Courses
Courses offered in the past four years.
▲ indicates offered in the current term
▹ indicates offered in the upcoming term[s]
INTD 0206 - Math/Science Contemp. Theatre
Mathematics and Science as Art in Contemporary Theatre
In Tom Stoppard’s Arcadia, the playwright somewhat miraculously manages to use the tension between Euclidean geometry and modern fractal geometry to explore the classical/romantic dichotomy in literature, science, art, and human personality. This is just one example of how acclaimed playwrights such as Stoppard, Rinne Groff, Michael Frayn, Simon McBurney, and others have effectively incorporated mathematical and scientific themes for artistic purposes. Our goal is to explore this relatively recent phenomenon in theater with an eye toward understanding the complementary ways in which science and art aim to seek out their respective truths. The course is intended to be experiential in both theatrical and scientific terms; our explorations will include the staging of scenes and discussions of theatre as performance; we will also undertake labs in the various mathematical sciences related to the material within the plays. (Dramatic Literature)/ DED LIT
Spring 2020
MATH 0121 - Calculus I
Calculus I
Introductory analytic geometry and calculus. Topics include limits, continuity, differential calculus of algebraic and trigonometric functions with applications to curve sketching, optimization problems and related rates, the indefinite and definite integral, area under a curve, and the fundamental theorem of calculus. Inverse functions and the logarithmic and exponential functions are also introduced along with applications to exponential growth and decay. 4 hrs. lect./disc. DED
Fall 2018, Fall 2019, Fall 2020, Spring 2021
MATH 0122 - Calculus II
Calculus II
A continuation of MATH 0121, may be elected by first-year students who have had an introduction to analytic geometry and calculus in secondary school. Topics include a brief review of natural logarithm and exponential functions, calculus of the elementary transcendental functions, techniques of integration, improper integrals, applications of integrals including problems of finding volumes, infinite series and Taylor's theorem, polar coordinates, ordinary differential equations. (MATH 0121 or by waiver) 4 hrs. lect. DED
Spring 2019
MATH 0200 - Linear Algebra
Linear Algebra
Matrices and systems of linear equations, the Euclidean space of three dimensions and other real vector spaces, independence and dimensions, scalar products and orthogonality, linear transformations and matrix representations, eigenvalues and similarity, determinants, the inverse of a matrix and Cramer's rule. (MATH 0121 or by waiver) 3 hrs. lect./disc. DED
Spring 2020
MATH 0323 - Real Analysis ▲
Real Analysis
An axiomatic treatment of the topology of the real line, real analysis, and calculus. Topics include neighborhoods, compactness, limits, continuity, differentiation, Riemann integration, and uniform convergence. (MATH 0223) 3 hrs. lect./disc. DED
Spring 2018, Fall 2018, Fall 2019, Fall 2020, Fall 2021, Spring 2022
MATH 0500 - Advanced Study ▲ ▹
Advanced Study
Individual study for qualified students in more advanced topics in algebra, number theory, real or complex analysis, topology. Particularly suited for those who enter with advanced standing. (Approval required) 3 hrs. lect./disc.
Spring 2018, Fall 2018, Winter 2019, Spring 2019, Fall 2019, Winter 2020, Spring 2020, Fall 2020, Winter 2021, Spring 2021, Fall 2021, Winter 2022, Spring 2022, Fall 2022, Winter 2023, Spring 2023
MATH 0710 - Advanced Probability Seminar ▲
Advanced Probability Seminar
This course is a tutorial in Probability Theory for students who have completed work in Probability and Real Analysis. Starting from elementary results about random walks, we will explore the fundamental mathematical ideas underlying measure theoretic probability, martingales, the Weiner process, and the Itô stochastic calculus. Working independently and in small groups, students will gain experience reading advanced sources and communicating their insights in expository writing and oral presentations. This course fulfills the capstone senior work requirement for the mathematics major. (MATH 0310, MATH 0323, and by approval). 3 hrs. sem.
Spring 2022
MATH 0723 - Topics in Analysis Seminar
Topics in Analysis Seminar
The foundation in analysis covered in MATH 0323 provides the tools necessary to engage a range of important and fascinating topics of both a pure and applied nature. In the first part of this seminar we will collectively work our way through the theory of Lebesgue measure and integration, studying the classical Banach spaces of integrable functions. After this common introduction, students will each choose a project from a range of options that includes topics in functional analysis (e.g., the open mapping theorem, the Hahn-Banach theorem) or more classical real analysis (e.g., Fourier series, orthogonal polynomials, the gamma function). Working independently and in small groups, students will gain experience reading advanced sources and communicating their insights in expository writing and oral presentations. This course fulfills the capstone senior work requirement for the mathematics major. (MATH 0323 or by approval). 3 hrs. sem.
Spring 2019
Co-Editor Math Horizons
Of all of the publications we know Math Horizons is the broadest, most creative forum that exists for communicating the culture, characters and folklore of mathematics today's students. Whether helping our students to know and care about the "who" and the "why" of their chosen subject, giving voice to its current practitioners, or shedding light on the interface between mathematics and the larger academic or popular culture, Math Horizons always explores its subjects with an inviting tone and trademark accessibility.
For going on fifteen years, Math Horizons has exposed undergraduates-and instructors-to the mathematical world beyond the classroom with authentic detail and good humor that make it easy to pick up and irresistible to read.
Bruce Torrence and Steve Abbott; Co-Editors, Math Horizons