Emily Proctor
she/her
Professor of Mathematics and Statistics

- Office
- Warner 212
- Tel
- (802) 443-5954
- eproctor@middlebury.edu
- Office Hours
- Monday 1:30-3pm, Thursday 12-1:30pm, Thursday, 11:30-12:30pm, and by appointment
Courses Taught
MATH 0121
Upcoming
Calculus I
Course Description
Calculus I
Introductory analytic geometry and calculus. Topics include limits, continuity, differential calculus of algebraic and trigonometric functions with applications to curve sketching, optimization problems and related rates, the indefinite and definite integral, area under a curve, and the fundamental theorem of calculus. Inverse functions and the logarithmic and exponential functions are also introduced along with applications to exponential growth and decay. (by waiver) 4 hrs. lect./disc.
Terms Taught
Requirements
MATH 0200
Linear Algebra
Course Description
Linear Algebra
Matrices and systems of linear equations, the Euclidean space of three dimensions and other real vector spaces, independence and dimensions, scalar products and orthogonality, linear transformations and matrix representations, eigenvalues and similarity, determinants, the inverse of a matrix and Cramer's rule. (MATH 0121 or equivalent) 3 hrs. lect./disc.
Terms Taught
Requirements
MATH 0223
Current
Multivariable Calculus
Course Description
Multivariable Calculus
The calculus of functions of more than one variable. Introductory vector analysis, analytic geometry of three dimensions, partial differentiation, multiple integration, line integrals, elementary vector field theory, and applications. (MATH 0122 or equivalent; MATH 0200 recommended) 3 hrs. lect./disc.
Terms Taught
Requirements
MATH 0302
Current
Upcoming
Abstract Algebra I
Course Description
Abstract Algebra
Groups, subgroups, Lagrange's theorem, homomorphisms, normal subgroups and quotient groups, rings and ideals, integral domains and fields, the field of quotients of a domain, the ring of polynomials over a domain, Euclidean domains, principal ideal domains, unique factorization, factorization in a polynomial ring. (MATH 0200 or by waiver) 3 hrs. lect./disc.
Terms Taught
Requirements
MATH 0335
Differential Geometry
Course Description
Differential Geometry
This course will be an introduction to the concepts of differential geometry. For curves in space, we will discuss arclength parameterizations, Frenet formulas, curvature, and torsion. On surfaces, we will explore the Gauss map, the shape operator, and various types of curvature. We will apply our knowledge to understand geodesics, metrics, and isometries of general geometric spaces. If time permits, we will consider topics such as minimal surfaces, constant curvature spaces, and the Gauss-Bonnet theorem. (MATH 0200 and MATH 0223) 3 hr. lect./disc.
Terms Taught
Requirements
MATH 0500
Current
Upcoming
Advanced Study
Course Description
Advanced Study
Individual study for qualified students in more advanced topics in algebra, number theory, real or complex analysis, topology. Particularly suited for those who enter with advanced standing. (Approval required) 3 hrs. lect./disc.
Terms Taught
MATH 0701
Galois Theory
Course Description
Galois Theory
This course is a tutorial in Galois theory for students who have completed Abstract Algebra. Starting from the concept of a ring, we will develop the theory of polynomial rings over fields, and use this to carry out an in-depth investigation of field extensions. Our work together will culminate in proving the fundamental theorem of Galois theory. Working independently and in small groups, students will explore related areas of algebra and communicate their insights in expository writing and oral presentations. This course fulfills the capstone senior work requirement for the mathematics major. (MATH 0302) 3 hrs. sem.
Terms Taught
Requirements
Areas of Interest
Riemannian Geometry
Academic Degrees
B.A., Bowdoin College; M.A., Ph.D. Dartmouth College