Profile of <span>Becky Tang</span>
Office
Warner 214
Email
btang@middlebury.edu
Office Hours
Math 118A: M 3-5pm, F 10:30am-12:00pm, by appointment. Math 218: W 3-5pm, by appointment.
Additional Programs
Mathematics

Courses Taught

Course Description

Introduction to Data Science
In this course students will gain exposure to the entire data science pipeline: forming a statistical question, collecting and cleaning data sets, performing exploratory data analyses, identifying appropriate statistical techniques, and communicating the results, all the while leaning heavily on open source computational tools, in particular the R statistical software language. We will focus on analyzing real, messy, and large data sets, requiring the use of advanced data manipulation/wrangling and data visualization packages. Students will be required to bring alaptop (owned or college-loaned) to class as many lectures will involve in-class computational activities. (formerly MATH216) 3 hrs lect./disc.

Terms Taught

Fall 2022

Requirements

DED

View in Course Catalog

Course Description

Statistical Learning
This course is an introduction to modern statistical, machine learning, and computational methods to analyze large and complex data sets that arise in a variety of fields, from biology to economics to astrophysics. The theoretical underpinnings of the most important modeling and predictive methods will be covered, including regression, classification, clustering, resampling, and tree-based methods. Student work will involve implementation of these concepts using open-source computational tools. (MATH 0118, or MATH 0216, or BIOL 1230, or ECON 1230, or ENVS 1230, or FMMC 1230, or HARC 1230, or JAPN 1230, or LNGT 1230, or NSCI 1230, or MATH 1230 or SOCI 1230) 3 hrs. lect./disc.

Terms Taught

Fall 2022, Spring 2023

Requirements

DED

View in Course Catalog

Course Description

Statistical Inference
An introduction to the mathematical methods and applications of statistical inference using both classical methods and modern resampling techniques. Topics will include: permutation tests, parametric and nonparametric problems, estimation, efficiency and the Neyman-Pearsons lemma. Classical tests within the normal theory such as F-test, t-test, and chi-square test will also be considered. Methods of linear least squares are used for the study of analysis of variance and regression. There will be some emphasis on applications to other disciplines. This course is taught using R. (MATH 0310) 3 hrs. lect./disc.

Terms Taught

Spring 2023

Requirements

DED

View in Course Catalog